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INTRODUCTION 
Clustering is an essential tool in data science research and is widely used in various applications, from image 

processing [1] to artificial intelligence [2] and genomics [3]. Particularly in genomics, it identifies groups of genes with 

similar patterns of expression, which may indicate functional relationships, particularly in genomics [4]. One of the 

solutions to the sparse of data is optimization algorithms, which are widely used and implemented in high-dimensional  

space. These algorithms have been Improvement of optimization algorithms directed towards nature behaviour to 

efficiently mimic optimization solutions [5], [6]. 

Clustering, as illustrated in Figure 1, groups a set of data objects into clusters to maximize the similarity between 

objects in the same cluster and the dissimilarity between objects in the different clusters [7]. Several clustering 

techniques have been proposed and implemented, with partition-based techniques being the most prevalent [8]. These 

methods, including the ubiquitous k-means [9], are characterized by their reliance on cluster prototypes and a 

predetermined number of clusters, denoted as 'k'. 

Several clustering techniques have been proposed and implemented like k-means have been instrumental in 

numerous applications, they suffer from inherent challenges, including sensitivity to initialization, vulnerability to local 

minima [10], [11] and the requirement of specifying k a priori. Several strategies have been employed to 

circumnavigate these challenges, such as innovative initialization techniques [12], [13], theoretical model alterations 

[14] and heuristic-based adjustments [15], [16]. However, these approaches have limitations, notably when confronted 

with non-uniform, nonconvex or skewed datasets. Additionally, with the surge in volume and complexity of data, 

traditional clustering methodologies have grappled with their inherent limitations [17]. The curse of dimensionality 

[18], a phenomenon where data becomes sparse in high-dimensional spaces, rendering the distances between points less 

meaningful, poses significant challenges [19]. 
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FIGURE 1. -  A partition with n = 65 and k = 3. 

The convex clustering model has emerged as a solution to tackle the problems related to prototype selection and 

optimization [20]. This approach is known for its nature and provides a theoretical assurance of finding global minima. 

Moreover, there has been progress, in the development of the semi-smooth Newton augmented Lagrangian (SSNAL) 

method [21] aimed at handling large scale issues in convex clustering. 

Our exploration, there is still a lack of understanding regarding the structures of local minima. This paper aims to 

bridge this gap by providing an, in depth analysis of synthetic datasets and conducting an exploration of the SSNAL 

algorithm and also emphasize the significance of convex clustering in data analytics. 

This investigation delves on an exploration of the following: 

1. A detailed examination of synthetic datasets and their inherent structures. 

2. The influence of gamma values on cluster dynamics. 

3. A comparative analysis of convex clustering compared to traditional methods underscores its robustness, 

flexibility and unique emphasis on the data structure. 

The subsequent sections of this paper are structured as follows: Section 2 explores our research methodology and 

offers insights into our dataset statistics; Section 3 presents an overview of prevalent clustering algorithms; Section 4 

delves into the formulation of the convex clustering problem; Section 5 examines various convex optimization 

techniques tailored for clustering; Section 6 elucidates the general steps for deploying convex clustering techniques; 

Section 7 presents a detailed examination of synthetic datasets; Section 8 reflects on the challenges in the realm of 

convex clustering and outlines future research directions; and Section 9 concludes this paper with a discussion. 

1. RESEARCH METHODOLOGY AND DATA STATISTICS 

This research's methodology and data statistics are grounded in bibliometric data, encompassing detailed 

information about a publication, such as its authors, keywords and document type. The common indices for this 

bibliometric data are Scopus, Web of Science (WoS) and Google Scholar. We have utilized multiple databases for this 

study to ensure a comprehensive selection of high-quality publications spanning various disciplines. 

Our research focuses on the nuances of convex clustering, specifically emphasizing its intricate relationship with 

optimization and algorithmic techniques. Consequently, our keyword search palette ranged from convex clustering and 

clustering algorithms to data mining and convex optimization. 

Our search spanned from 1996 to 2023 to encompass the significant developmental phase of convex clustering, 

starting from its foundational stages. This period marks the emergence of key research and seminal works in the field, 

providing a complete historical-to-contemporary overview. The distribution of these documents by year is illustrated in 

Figure 2. 

 
FIGURE 2. - Distribution of documents by year. 

In addition to analysing the temporal distribution, we also examined the geographical spread of research 

contributions. The bar chart in Figure 3 visually compares the document counts from various countries, highlighting the 

global interest and diverse contributions in the field of convex clustering. This geographical analysis underscores the 
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widespread academic engagement with convex clustering worldwide, with countries like China and the United States 

leading in document counts. 

 
FIGURE 3. - Document counts for various countries. 

Further, an analysis by subject area reveals that computer science, mathematics and engineering are the 

predominant fields contributing to the research on convex clustering. Figure 4 illustrates the proportional contributions 

of these and other disciplines, showcasing the multi-disciplinary nature of research in this area. The diversity of 

disciplines reflects the wide range of applications and interest in convex clustering within the academic community. 

 

 
FIGURE 4. - Proportional contributions of different disciplines. 

2. OVERVIEW OF CLUSTERING ALGORITHMS 

Clustering is a versatile method used to identify and group similar data. Its significance has surged due to the 

increasing volume of data, leading to a pressing need for refined data segmentation strategies. The k-means algorithm 

[22] is notable for its simplicity and efficacy compared to various other algorithms. The essence of clustering revolves 

around assessing similarities, often quantified using mathematical distance measures. Jain and Dubes (1988) articulate 

this concept by highlighting that members within a cluster should closely resemble each other while markedly different 

from those outside their group. It is essential that the criteria for these assessments are both clear and actionable [23], 

[24]. Broadly, clustering algorithms can be categorized into several groups (as shown in Figure 5). 

• Partition-Based Clustering [25]: Partition-based clustering divides data into k clusters, each represented by a 

central point, which can be either a centroid (the average location of all points) or a medoid (the most 

representative point). The prominent algorithms in this category are k-means and k-medoid, renowned for their 

efficiency in clustering data based on distance. 

• Hierarchical Clustering (HC) [26]: Hierarchical clustering (HC) categorizes data objects into hierarchical levels, 

forming iterative clusters using either top-down or bottom-up approaches, allowing for data exploration at different 

granularity levels. The agglomerative method merges single objects into larger clusters, while the divisive method 

breaks down clusters until each object forms a single cluster or a stopping criterion is met. 

• Density-Based Clustering [27], [28]: Density-based clustering identifies dense regions as clusters, with high-

density modes forming a cluster centre and sparse areas marked as noise and outliers. This method enables the 

clustering of arbitrary shapes and effectively eliminates outliers or noisy data points, as seen in algorithms like  a 

density-based clustering algorithm (DBSCAN) and ordering points to identify the clustering structure (OPTICS). 

• Model-Based Clustering [29], [30]: This clustering approach assumes that data originates from a specific 

probability distribution or model, with each component corresponding to a distinct cluster. The most common 

approach to model-based clustering is the Gaussian mixture model (GMM). The primary goal is to enhance the 
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model's alignment with the observed data. A notable advantage is its ability to pinpoint outliers. However, it 

necessitates the estimation of model parameters, often employing the Expectation-Maximization (EM) algorithm 

as a central method. 

• Spectral and Graph-Based Clustering [31]: Spectral clustering (SC) is a type of clustering algorithm that forms 

groups based on the connections between data points. It forecasts the data into a lower-dimensional space using the 

eigenvalues and eigenvectors of the data matrix. The concept of a data graph representation underpins it, with 

nodes representing data points and edges denoting similarities between data points. 

• Biclustering or Co-Clustering [32]–[34]: Biclustering is a versatile analytical tool that clusters rows and columns 

of a matrix to identify checkerboard-like biclusters. It is flexible enough to identify subgroup structures in both 

dimensions, offering unique advantages in gene expression analysis. Systematically clustering genes and samples 

can accurately identify local structures, such as in plaid mode (PM) and spectral co-clustering. 

 

FIGURE 5. - A graphical representation illustrating the diverse categories of clustering algorithms. 

High-dimensional spaces pose challenges that traditional single-objective clustering techniques may struggle with. 

Different data sets may require varied validity measures, and the efficiency of algorithms decreases as cluster overlap 

increases [35], [36]. Table 1 below provides a concise summary of various clustering algorithms. 

Advancements, in research have greatly contributed to our knowledge and practical implementation of clustering 

algorithms in the areas of evaluating cluster validity and determining optimal clusters. Li et al. [37] proposed a method 

for evaluating cluster validity by using the ratio of the deviation of sum-of-squares and Euclidean distance. They 

demonstrated its effectiveness in dynamically identifying near-optimal cluster numbers across diverse datasets. 

Chowdhury et al. [38] developed an entropy-based initialization method for the k-means algorithm, enhancing cluster 

determination in multidimensional image datasets. Fang et al. [39] contributed to this field by introducing the clustering 

deviation index (CDI), a novel metric for evaluating clustering accuracy in single-cell RNA sequencing (scRNA-seq) 

data. Challenging the conventional unsupervised approach of clustering algorithms, Sinaga and Yang [40] presented a 

procedure for k-means that autonomously calculates the optimal number of clusters, broadening its applicability to 

various datasets. Safari et al. [41] innovatively refined the bisecting k-means algorithm to automate the selection of 

cluster quantity, thereby achieving notable enhancements in computational efficiency and resource utilization. Yin et al. 

[42] adeptly employed mixed-data clustering techniques in the context of life insurance risk management. They focused 

on critically analysing discrepancies between expected and actual death claims by applying the k-prototype clustering 

method. Al-Janabee and Al-Sarray [43] explored the clustering of brain tumour gene expression data using fuzzy c-

means (FCM) and its hybrid forms combined with particle swarm optimization (PSO) and a genetic algorithm (GA). In 

the context of internet of things (IoT) and big data, Li et al. [44] proposed the meta-clustering ensemble scheme based 

on model selection (MCEMS), leveraging agglomerative hierarchical clustering (AHC). Uykan [45] extended the EM 

formulation for GMM by creating a fusion of centroid-based and graph clustering termed hybrid-nongreedy 

asynchronous clustering (H-NAC). This approach outperformed k-means, SC and structured graph learning (SGL). 

These developments underscore the growing sophistication and practical relevance of clustering techniques in data 

analysis. 

Convex clustering has emerged as a notable solution, merging the advantages of traditional techniques with 

robustness, the ability to guarantee global optimal solutions [46], [47] and flexibility without needing a predefined 

number of clusters [48]. Drawing upon a foundation [49], [50] it is important to acknowledge that this approach does 

have its limitations. These limitations encompass issues, with the quality of data representation, computational hurdles 

when dealing with datasets [51], the need for re-optimization with dynamic data and challenges in handling noise in 

high-dimensional scenarios [52]. 

Understanding of clustering techniques, especially when working with data that has high-dimensions, is extremely 

important. The emergence and significance of convex clustering methods highlight this point. The subsequent sections 

will further explore these techniques, examining their theoretical foundations and practical applications. 
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Table 1. - An overview of various clustering algorithms. 

Algorithm Mathematical Formula 
No. 

Eq. 

Noise 

Handling 

Cluster 

Requirements 

Scalability for 

High Dimension 
Ref. 

k-means 
 

(1) Poor Yes Poor [53], [54] 

HC  (2) Poor No Poor [8], [55] 

DBSCAN  (3) Good No Poor [56], [57] 

EM   (4) Moderate No Poor [29], [58] 

SC   (5) Poor Yes Poor [31], [59] 

PM   (6) Moderate Yes Moderate [60], [61] 

 

3. CONVEX CLUSTERING PROBLEM FORMULATION 

Convex clustering has become increasingly popular as an efficient alternative to conventional clustering techniques 

such as k-means. However, because the K-Means algorithm is NP-hard and k has to be given first, convex clustering 

offers a more practical solution [62], [63]. Lindsten et al. [64] proposed convex relaxed k-means clustering, which uses 

a fusion penalty to achieve agglomerative clustering. Also, [65] offers an exhaustive analysis of convex clustering, 

delineating various model formulations and optimization strategies. This comprehensive review expands both the 

theoretical and practical understanding of convex clustering, highlighting its statistical properties and its multifaceted 

applications across diverse fields. 

Basically, to control convex clustering via data alongside with the cluster’s shapes. This is achievable by adjusting 

hyperparameter denoted λ. This hyperparameter is responsible for the cluster centroids positions and it potentially 

affect the performance efficacy of the cluster. Choosing the right λ ensure avoiding trivial results solutions. Several 

research studies, including those by Tan and Witten [66], Chi et al. [67] and Wang et al. [52], have delved into the 

nuances of selecting λ. The concept is further developed in weighted convex clustering, where weights are judiciously 

assigned to the regularization term. This adjustment enhances stability against outliers and noise [68]. Despite its 

mathematical allure, convex clustering requires pristine data features, making it susceptible to challenges in noisy 

scenarios. In this context, it is noteworthy that Prony's method, a widely used method for modelling signals using a 

finite sum of exponential terms, has been explored for potential improvements through nuclear-norm-penalized 

regularization to enhance its stability against noise perturbations [69]. Such complementary techniques could offer 

valuable insights for addressing the vulnerability of convex clustering to noise in high-dimensional datasets. 

The mathematical model of convex clustering, expressed of the sum of norms, can be formulated in various ways, 

see Table 2 below. Consider a dataset represented by data points , where  represents the number of 

observations and  indicates the number of features for each observation. Each observation  stands for a distinct 

entity, and the features capture various attributes or characteristics associated with the entity.  

The standard convex clustering approach is fundamentally structured as follows: 

  (7 )  

Where  can take values from the set . The hyperparameter  plays a pivotal role in dictating the 

clustering's granularity, as higher values consolidate data into fewer clusters. 

The weighted version of convex clustering, designed to offset the potential penalization of centroids, is articulated 

as follows: 

  (8 )  

The weights, , are computed based on the proximity of neighbouring data points  and , using the function 

defined as: 

  (9 )  

Where:  is one of the k-nearest neighbours of  and  and  is a constant. 

Hocking et al. [68] emphasized that the distance between data points primarily influences the selection of weights. 

In many of the experiments presented in the paper, the weights decay based on the distance, following the formula 

 . This approach suggests that points closer to each other are assigned higher weights than 

those that are farther apart. Furthermore, in certain scenarios, a uniform weight of  is adopted to streamline 

computation. The central objective behind this weight selection strategy is to guarantee accurate cluster formation and 

avert undesired cluster splits. This effectively shapes the solution path's geometry and determines the final number of 

clusters tailored to the dataset. 
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Table 2. - Overview of various convex clustering formulations. 

Item Description 
No. 

Eq. 
Ref. 

Formulation 
 

(10) [70] 

Details where  is the matrix of squared Euclidean distances between the data points,  is 

the Gram matrix of the data points,  is the trace of , and  is the 

number of clusters. 

Remarks Semi-definite programming (SDP) relaxation of k-means, aiming to minimize the 

trace of AX. The efficiency of this approach depends on the available SDP 

solvers. 

Formulation 

 

(11) [71] 

Details D is a diagonal matrix with weights . B is a sparse matrix.  represents the 

cluster centers matrix. 

Remarks Tree-structured convex clustering (TCC) uses a tree structure to represent data as 

a graph. It promotes cluster formation by summing the   norms of the  

matrix's rows. 

Formulation   (12) [72] 

Details The term trace  reduces within-cluster variation using the similarity matrix 

 and Laplacian  promotes  sparsity, guided by positive 

   that ensure similarity across views, adjusted by 

positive  

Remarks Convex relaxation of the pairwise sparse spectral clustering (PSSC) model can be 

solved more efficiently and used to compute the solution matrices for the 

nonconvex model. 

Formulation   (13) [73] 

Details    is the centre for the  th data point  weights the features of  and, for 

missing data, indicates observed features.   is the regularization factor, and   

weights the distance influence between points  and  on cost. 

Remarks Convex relaxation of the pairwise sparse spectral clustering (PSSC) model can be 

solved more efficiently and used to compute the solution matrices for the 

nonconvex model. 

Formulation   (14) [74] 

Details The term   represents the fidelity term for the difference between 

data points and the combined clustering and robust components. The 

regularization term remains unaltered. The expression  regularizes   for 

row sparsity, which is useful for detecting outlier features. In this context,  

indicates the data noise level. 
Remarks Robust convex clustering (RCC) extends the base model to handle outliers and 

missing data. It decomposes data into clustering and robust components using a 

-norm to enforce row-wise sparsity and identify outliers. 

Formulation   (15) [75] 

Details   and  are the  th data point and its cluster center.  is a positive definite 

matrix for the learned metric.  weighs the connection between points  and 

 balances fidelity and regularization. The condition  ensures 

 is positive definite, maintaining convexity and metric relevance. 

Remarks The convex clustering with metric learning (CCML) method extends the standard 

algorithm by incorporating a positive definite matrix  to weigh the features 

based on their relevance and noise levels. 

Formulation   (16) [52] 

Details  is the fidelity term reflecting error between data and clusters. 

  regularizes with  weights indicating similarity and 

measuring cluster center distances.  is the group-lasso penalty, using 

 weights, promoting sparsity in  's columns, indicating less informative 
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4. CONVEX OPTIMIZATION TECHNIQUES FOR CLUSTERING 

In the realm of data analytics and machine learning clustering techniques have attracted interest as they provide 

sophisticated tools, for understanding and unravelling complex datasets. Out of the techniques available convex 

clustering and biclustering have become particularly popular because of their inherent reliability and ability to generate 

globally optimal solutions. 

The inception of the lasso, introduced by Tibshirani in 1996 [79], marked a pivotal moment as it instigated sparse 

coefficients within linear models, striking an optimal balance between subset selection and ridge regression. This 

pioneering method laid the groundwork for Pelckmans et al. in 2005 [80], who explored convex optimization for 

clustering. They ingeniously incorporated a shrinkage term, which led to sparse centroids. Tibshirani et al. [81] further 

Item Description 
No. 

Eq. 
Ref. 

features.  and  adjust the balance among the terms. 

Remarks Sparse convex clustering method, which extends standard convex clustering by 

incorporating a group-lasso penalty to encourage sparsity in the columns of the 

solution matrix . This sparsity helps exclude non-informative features from the 

clustering. 

Formulation   (17) [76] 

Details C is the matrix of cluster centres, where each row is a centre. Vector w signifies 

weights, while ,  are tuning parameters for balancing fidelity, group lasso and 

lasso penalties. The fidelity term,  , measures the data-cluster 

discrepancy.  is the regularization of  indicating similarity 

and measuring cluster distance. The sparse group lasso penalty, 

, encourages group and individual sparsity, 

adjusted by  

Remarks The sparse group lasso convex clustering (SGLCC) method encourages fidelity to 

the data and the formation of clusters. The second term is a sparse group lasso 

penalty that encourages sparsity in the columns of  (variable selection) and 

within-group sparsity.  

Formulation   (18) [77] 

Details Each data point has a nonnegative weight , while pairs have weights . In this 

setup,  is the  th data point, and  its cluster center.  is a nonnegative 

parameter balancing fidelity and regularization. 

Remarks Sum-of-norms (SON) clustering model with multiplicative weights. It is an 

extension of the SON clustering model that incorporates multiplicative weights 

into the objective function. 

Formulation   (19) [78] 

Details The matrix  holds the data, and  represents clusters.  measures error 

between data and clusters.  and  are 

regularization terms with  and  as similarity weights for rows and columns. 

 balances fidelity and regularization. 
Remarks The convex biclustering model formulation simultaneously clusters patients and 

genetic pathways by fusing the columns and rows in the data matrix. 

Formulation   (20) [67] 

Details The Frobenius norm, , measures the difference between tensors  and , 

pushing  to closely match  is a nonnegative tuner, with larger values 

emphasizing a checker box pattern.   is regularization term promoting a 

checker box pattern by comparing tensor slices. These terms urge similar slices to 

merge, with the merge strength determined by weights . Higher weights push 

slices closer. 

Remarks The convex objective function   plays a pivotal role in the co-clustering 

approach by driving the estimation process.  The objective of this approach is to 

reduce the value of this function in order to approximate the provided tensor 

while simultaneously achieving the intended checker box clustering pattern. 
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enhanced this research in 2005, introducing the concept of a fused lasso to emphasize both coefficient sparsity and local 

constancy, especially in high-dimensional datasets.  

In 2011, Boyd and his colleagues emphasized the potential of the alternating direction method of multipliers 

(ADMM), for solving distributed optimization problems. This approach is particularly important when dealing with 

large scale challenges [82]. Around the time Lindsten and his team introduced a method called sum of norms (SON) 

which is an adaptive approach, for determining the number of clusters. On they proposed a modified version of k-

means clustering that utilizes optimization techniques [20] [64]. 

Over the years, researchers have ardently explored and enhanced convex clustering. A testament to this is the work 

of Zhu et al. in 2014 [83], who conducted an exhaustive theoretical analysis of the SON clustering technique. Their 

insights validated the efficacy of it under certain specified conditions. Another noteworthy contribution was made by 

Chi and Lange in 2015 [84], who conceptualized two innovative splitting methods for convex clustering. Their 

comparative analysis of the efficacies of ADMM and the alternating minimization algorithm (AMA) revealed the 

latter's superiority. In the same year, Tan and Witten [66] embarked on exploring the statistical intricacies of convex 

clustering. Their findings unveiled its interrelationships with other clustering techniques and elucidated the optimal 

range for its tuning parameter. Recent work has assessed nuclear-norm-penalized regularization's potential to enhance 

Prony's method's stability in signal modelling, especially with noisy, low-rank signals [69]. 

The intricate web of research in convex clustering and biclustering, encompassing foundational works and recent 

advancements, is visually represented in Figure 6. Each node epitomizes a unique study, with the node size denoting its 

citation frequency. The interconnections, indicated by arrows, showcase the evolution of ideas and how contemporary 

research builds upon prior foundations. The chronological timeline at the base provides a temporal context, 

emphasizing the burgeoning growth and escalating interest in this domain over time. 

 
FIGURE 6. - Citation network of convex clustering and biclustering research. 

Convex clustering's allure is undeniable. However, its efficacy can be contingent upon the dataset's size and 

intricacy. To mitigate these challenges, scholars have proposed an array of strategies, including the SSNAL method, 

adaptive sieving (AS), enhanced AS (EAS) techniques, the majorization penalty algorithm and other ADMM-centric 

methods. The viability of these approaches has been empirically tested across diverse datasets, spanning from simulated 

and synthetic data to classic ones like MNIST, Iris and WINE, and even specialized datasets like The cancer genome 

atlas (TCGA) datasets. 

Table 3 provides a detailed summary of recent research endeavours in this domain from 2018 to the present. This 

table delineates the specific challenges addressed by each study, the datasets they employ, their strategies and their 

pivotal findings. By scrutinizing these studies, we aim to provide a panoramic view of the current landscape and the 

prospective trajectories of convex clustering and biclustering. 

Table 3. - Convex clustering and biclustering: An analysis of methodologies, challenges and datasets used. 

Author, Year Term Analysis 

Yuan et al. 

(2018) [85] 

Problem Solve large-scale problems with existing algorithms for convex clustering. 

Dataset(s) Synthetic, MNIST, Fisher Iris, WINE and Yale face B datasets. 

Remark and 

Key Findings 

Semismooth Newton based augmented Lagrangian method for large-scale 

convex clustering problems. SSNAL shows superior performance and scalability 

compared to the state-of-the-art software CVXCLUSTR. 

Xu et al. 

(2018) [86] 

Problem Limited applicability and restrictiveness of existing total variation based convex 

clustering. 

Dataset(s) Synthetic, Iris, AR face, LIBRAS movement and leaf datasets. 

Remark and A weighted sum-of- -norm relating convex model. The proposed convex model 
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Author, Year Term Analysis 

Key Findings has better empirical performance compared to standard clustering methods.  

Weylandt, 

M. (2019) 

[78] 

Problem The computational properties of convex formulations of biclustering and tensor 

co-clustering have been less well studied. 

Dataset(s) Presidential speeches and TCGA breast cancer datasets. 

Remark and 

Key Findings 

Three efficient operator-splitting methods for the convex co-clustering problem 

are presented: a standard two-block ADMM, a generalized ADMM is far more 

efficient for large problems. 

Zhang, M. 

(2019) [87] 

 

 

Problem The instability issue is a significant drawback of traditional nonconvex clustering 

methods, often leading to inconsistent clustering results. 

Dataset(s) Synthetic and Iris datasets. 

Remark and 

Key Findings 

Forward-stagewise clustering for convex clustering. Forward-stagewise 

clustering can correctly identify the underlying clusters. 

Zhou et al. 

(2020) [88] 

Problem Convex clustering approach with current state-of-the-art algorithms requiring 

large computation and memory space. 

Dataset(s) Synthetic Gaussian, Mouse embryo scRNA-seq and Human PBMC scRNA-seq 

datasets. 

Remark and 

Key Findings 

The smoothing proximal gradient algorithm (Sproga) outperforms ADMM- or 

AMA-based convex clustering algorithms in speed by one to two orders of 

magnitude. It requires at least an order of magnitude less memory. Additionally, 

it surpasses popular algorithms like k-means and hierarchical clustering. 

Weylandt et 

al. (2020) 

[51] 

 

Problem Despite the promise of convex clustering, it has not been widely adopted due to 

its computational intensity and lack of compelling visualizations. 

Dataset(s) Genomics and text analysis datasets. 

Remark and 

Key Findings 

The convex clustering via algorithmic regularization paths (CARP), which 

employs algorithmic regularization, offers a 100-fold speedup over conventional 

methods, provides a more refined approximation grid and enhances clustering 

solution visualization. 

Quan, Z., & 

Chen, S. 

(2020) [47] 

Problem Convex clustering method is sensitive to outliers, causing skewed clustering 

results. 

Dataset(s) Synthetic, USPS digit and UCI datasets. 

Remark and 

Key Findings 

A robust convex clustering algorithm (RCC) retains the benefits of CC, such as 

convexity, global optimality and initialization stability, while excelling in outlier 

detection and clustering quality. 

Jiang, T., & 

Vavasis, S. 

(2020) [77] 

Problem Validating cluster assignments from various algorithm approximations and 

boosting the efficacy of sum-of-norms clustering. 

Dataset(s) A mixture of Gaussians and simulated half moons dataset. 

Remark and 

Key Findings 

The effectiveness of sum-of-norms clustering was shown to be enhanced with 

multiplicative weights. Several areas for further investigation were identified, 

including the test's complexity and the generation of weights without prior data 

information. 

Chen et al. 

(2020) [76] 

Problem The instability of classical clustering methods is due to their tendency to sink 

into the local optimal solutions of the nonconvex optimization model. 

Dataset(s) Simulated, brain A, SRBCT, prostate, colon and ARB datasets. 

Remark and 

Key Findings 

The sparse group lasso convex clustering (SGLCC), which autonomously 

determines cluster counts and group data while filtering nonessential features, 

was introduced. Using the semi proximal alternating direction method of 

multipliers (sPADMM) for implementation, it exhibited enhanced performance 

and feature selection capabilities. 

Chen, J., & 

Suzuki, J. 

(2021) [89] 

Problem The standard convex clustering problem contains a non-differentiable function 

optimization, which is inefficient. 

Dataset(s) Presidential speeches, TCGA and DLBCL datasets. 

Remark and 

Key Findings 

The proposed method combines ALM with Nesterov's accelerated gradient 

method, improving efficiency and stability across a range of  values. It also 

opens avenues for further improvements and application to other clustering 

problems. 

Zhang et al. 

(2021) [90] 

Problem Convex clustering is noted for its performance and global optimality guarantees, 

but it's high computational cost makes it challenging for large datasets. 

Dataset(s) Simulated, lympho, gene, Frey faces, RNA, anuran, fashion and Kuzushiji-

MNIST datasets. 
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Remark and 

Key Findings 

Dynamic programming was used to tackle L1 convex clustering. The introduced 

C-PAINT method visualizes cluster paths. With uniform weights in L1 convex 

clustering, this efficient algorithm surpassed others and addressed computational 

challenges, enabling full cluster path recovery for extensive datasets. 

Weylandt et 

al. (2021) 

[91] 

Problem Simultaneous denoising and clustering of noisy signals. 

Dataset(s) Synthetic signal and NMR spectroscopy datasets. 

Remark and 

Key Findings 

A sparse convex wavelet clustering technique merges wavelet denoising with 

sparse convex clustering. It surpasses current algorithms, offering global 

solutions and clearer, wavelet-sparse cluster centroids, enhancing result 

interpretation and data compression. 

Wang et al. 

(2021)[92] 

Problem Enhancing the efficiency of the sum-of-norms (SON) model for clustering. 

Dataset(s) Simulated, Iris, WINE, letter-recognition, knowledge and MNIST datasets. 

Remark and 

Key Findings 

Euclidean distance matrix model based on the SON model, majorization penalty 

algorithm. The proposed model and majorization penalty algorithm demonstrate 

high efficiency in solving the SON model for clustering. 

Wang et al. 

(2021) [93] 

Problem High-dimensional sparse clustering with compositional data. 

Dataset(s) Simulated and central nervous system (CNS) gene expression datasets. 

Remark and 

Key Findings 

Compositional convex clustering with sparse group lasso (CCC-SGL), employs a 

proximal gradient descent within the ADMM framework, enhancing clustering 

by filtering excess features and picking cluster-specific traits. 

Wang, M., 

& Allen, G. 

I. (2021) 

[94] 

Problem Integrative clustering of high-dimensional mixed multi-view data. 

Dataset(s) Simulated, text mining and genomics datasets. 

Remark and 

Key Findings 

The integrative generalized convex clustering optimization (iGecco) method uses 

an adaptive shifted group lasso penalty and a generalized multi-block ADMM 

algorithm. It picks optimal features from each data view, enhancing integrative 

clustering. 

Sun et al. 

2021 [21] 

 

Problem Theoretical guarantee and an efficient algorithm for the general weighted convex 

clustering model. 

Dataset(s) Synthetic, MNIST, Fisher Iris, WINE and Yale face B datasets. 

Remark and 

Key Findings 

Semismooth Newton-based augmented Lagrangian method. The proposed 

algorithm has superior performance and scalability, solving a convex clustering 

problem with 200,000 points in R3 in about six minutes. 

Shimamura, 

K., & 

Kawano, S. 

(2021) [95] 

Problem Sparse convex clustering depends heavily on the data and can reduce estimation 

accuracy when the sample size is insufficient. 

Dataset(s) Generated two half-moons and LIBRAS movement datasets. 

Remark and 

Key Findings 

Based on Bayesian lasso and global-local shrinkage priors, the proposed 

Bayesian sparse convex clustering method, with Gibbs sampling, delivers 

accurate MAP estimation and addresses weight dependencies in the 

regularization term. 

Pi et al. 

(2021) [96] 

Problem Clustering tasks often pose the challenge of nonconvex problems without clear 

global optima. The objective was to craft a rapid-converging algorithm for 

convex clustering issues. 

Dataset(s) Simulated, synthetic, Iris, seeds, mammal and modified lung cancer gene 

datasets. 

Remark and 

Key Findings 

A dual formulation for convex clustering uses a first-order project gradient 

method, line search, adaptive restart and a regularization framework. This 

method quickly converges, accurately clusters by leveraging sparsity in the 

fusion penalty, and performs better with a sparsity-inducing norm in high 

dimensions. 

Shetta et al. 

(2022) [97] 

Problem Challenges in multi-view clustering methods for multi-omic data. Existing 

methods are computationally complex and do not consider the intrinsic manifold 

structure of the data. 

Dataset(s) Simulated datasets and TCGA breast, esophageal, endometrioid, kidney renal 

clear cell and lung squamous cell carcinoma datasets. 

Remark and 

Key Findings 

Convex graph regularized multi-view clustering method that is robust to outliers. 

The method is compared to state-of-the-art convex and nonconvex multi-view 

and single view clustering methods, particularly for clustering cancer subtypes. 

The results show superior performance in integrating different views by 

considering the complementary information present in each view. The method 
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also demonstrated a better ability to discover cancer subtypes than other state-of-

the-art multi-view methods. 

Chen et al. 

(2022) [98] 

 

Problem Clustering algorithms often struggle with heavy-tailed data. The new 

robustification parameter adds complexity to optimal parameter selection. 

Dataset(s) Simulated and lung cancer gene expression datasets. 

Remark and 

Key Findings 

A robust convex biclustering (RCBC) version integrates Huber loss and an 

automatic tuning-free method for optimal robustification parameter selection. It 

greatly surpasses COBRA in heavy tail situations and streamlines the parameter 

optimization process. 

Yuan et al. 

(2022) [99] 

Problem Accelerate algorithms for large-scale convex optimization with inherent 

structured sparsity. 

Dataset(s) Simulated and MNIST datasets. 

Remark and 

Key Findings 

The adaptive sieving (AS) and enhanced AS (EAS) techniques boost the SSNAL 

algorithm's speed by over seven times and the ADMM algorithm by over 14 

times. 

Touw et al. 

(2022) [100] 

Problem Convex clustering's limitations with large data sets and hierarchical structure 

issues. 

Dataset(s) Simulated, banknote, musk, MAGIC telescope and MNIST datasets. 

Remark and 

Key Findings 

A new, efficient algorithm (CCMM) is proposed to minimize the convex 

clustering loss function and compute the cluster path. Outperforms AMA and 

SSNAL in speed tests.  

Shimmura, 

R., & 

Suzuki, J. 

(2022) [101] 

 

Problem Efficiency challenges in sparse estimation problems such as fused lasso and 

convex clustering. 

Dataset(s) Data generated by a Gaussian distribution. 

Remark and 

Key Findings 

The method transforms ADMM solutions into proximal gradient ones, enhancing 

efficiency for sparse estimation. It is especially promising for cases with two 

additional regularization terms. 

Fodor et al. 

(2022) [102] 

Problem Scalable parallel and distributed solvers for convex clustering are limited. 

Dataset(s) Synthetic data sets and Iris data. 

Remark and 

Key Findings 

The introduced parallel distributed ADMM-based convex clustering algorithm 

scales well in clusters, efficiently handles large datasets and may surpass existing 

methods in speed and accuracy. 

Armacki et 

al. (2022) 

[103] 

Problem Personalized federated learning lacks automatic user model clustering without 

prior knowledge of cluster structure. 

Dataset(s) Simulated binary data.  

Remark and 

Key Findings 

The proposed algorithm generalizes convex clustering for automatic model 

clustering, personalization and generalization, efficiently solved using PDMM. 

Numerical experiments confirm effectiveness. 

Wang et al. 

(2023) [104] 

Problem Existing biclustering algorithms require extra smoothing steps to obtain 

informative biclusters and cannot incorporate the compositional constraints 

required for certain data. 

Dataset(s) Simulated murine gut microbiome and murine microbiome datasets. 

Remark and 

Key Findings 

A new algorithm for the standard convex biclustering and its extension under the 

compositional constraints (bi-ADMM and biC-ADMM) can provide a clear 

checkerboard-like pattern directly without any further smoothing step. biC-

ADMM can solve biclustering problems with compositional constraints. 

Chakraborty, 

S., & Xu, J. 

(2023) 

[105]  

Problem High-dimensional data challenges convex clustering because of vague pairwise 

affinities and less effective Euclidean fit metrics. 

Dataset(s) Simulated low SNR, LIBRAS movement and leukaemia datasets. 

Remark and 

Key Findings 

Biconvex clustering optimizes feature weights with centroids, tackling 

dimensionality issues and reducing reliance on tuned heuristics. It enhances 

feature selection during clustering and improves quality. 

Li et al. 

(2023) [106] 

 

Problem The k-means algorithm easily gets stuck in spurious local minima, and the 

number of clusters has to be given a priori. 

Dataset(s) Synthetic, HTRU2, Iris, WINE, X8D5K and Statlog datasets. 

Remark and 

Key Findings 

Multi-prototypes convex merging based k-means clustering algorithm (MCKM), 

integrating MPS and CM, eliminates the need to pre-specify cluster count and 

achieves a superior local minimum for the k-means issue. 
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Additionally, through Table 3, we aim to offer valuable insights into the evolving landscape of convex clustering 

and biclustering, the challenges researchers encounter, and the innovative solutions being developed to tackle these 

challenges. 

5. GENERAL STEPS FOR CONVEX CLUSTERING TECHNIQUES 

Convex clustering, as previously elucidated, amalgamates the principles of k-means clustering with regularization. 

This fusion optimally balances the categorization of data points while preserving desired attributes, such as smooth 

cluster assignments. The following steps provide a structured blueprint for effectively implementing convex clustering 

techniques (see Figure 7): 

1. Data Preprocessing: Prior to clustering, it is imperative to normalize or standardize the dataset, ensuring 

feature uniformity. Given the inherent challenges of high-dimensionality, techniques such as principal 

component analysis (PCA) [107] or t-distributed stochastic neighbor embedding (t-SNE) [108] can expedite 

the clustering process and potentially elevate its quality. 

2. Problem Mathematical Formulation: The core objective function for convex clustering aims to minimize 

the within-cluster distances [84], ensuring that data points within a cluster are as close to each other as 

possible. Additionally, incorporating a convex penalty further enhances the robustness of the solution. 

3. Convex Optimization Methods: The efficacy of convex clustering hinges on advanced optimization 

techniques. Central to this is the ADMM [82], which adeptly navigates the challenges of convexity and 

variable splitting inherent in the shrinkage term [84]. A key development is the method for estimating cluster 

matrices in Gaussian mixture using semi-definite programming. This technique employs a Bregman-ADMM-

type algorithm centred on pairwise distances, integrating embedding and clustering via pairwise affinity 

analysis [109].  The AMA transforms unconstrained problems into their constrained, nonsmooth variants, 

broadening its scope through sparse iteration [83]. First-order strategies include stochastic splitting [63] and 

the Frank-Wolfe methods [68]. Second-order methods like SSNAL [21] also harmonize efficiency and 

precision through the nuanced handling of smooth, non-linear equations. 

4. Evaluation:  Three established metrics are employed to assess the performance of clustering algorithms: the F-

measure , normalized mutual information (NMI) and adjusted Rand index (ARI) [110]–[112]. These 

metrics quantify the concordance between the clustering outcomes and the ground truth. 

5. Interpretation: The culmination of the clustering process is the profound interpretation of the derived 

clusters. Valuable insights can be gleaned by examining data attributes within clusters or analysing the cluster 

centroids' characteristics [113].  

 
FIGURE 7. - Structured procedure for employing convex clustering techniques. 

6. EXAMINATION OF SYNTHETIC DATASETS 

Synthetic datasets have become indispensable in data science and analytics, serving as essential tools to rigorously 

test algorithms, establish benchmarks and foster academic exploration. Specifically tailored to emulate real-world 
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scenarios, these datasets provide a controlled environment for algorithm validation and refinement. In this review, we 

thoroughly examined six selected synthetic datasets. We explored their intrinsic structures, scrutinized their interactions 

with the SSNAL [21] algorithm and underscored the overarching probability of convex clustering in contemporary data 

analytics. 

6.1 VISUALIZATION OF SYNTHETIC DATASETS: EXPLORING INTRINSIC STRUSTURES 

Understanding the inherent geometries and patterns of our chosen datasets is paramount. Detailed scatter plots 

offer a vivid snapshot of each dataset's landscape. As showcased in Figure 8, these datasets include variations such as 

unbalanced data, nonconvex configurations and convex shapes. The synthetic datasets encompass: 

• Noisy Circles: The dataset called noisy circles consists of two circles that are positioned inside each other 

with some random points scattered between them. This dataset creates difficulties for clustering algorithms 

that depend heavily on measuring distances because the inner and outer circles do not have a separation, 

between their points. 

• Noisy Moons:  The dataset has a resemblance to two crescent moons. Consists of overlapping semi circles 

with some added noise. Its unique structure poses difficulties for approaches that assume clusters, with convex 

shapes. 

• Blobs: This dataset consists of a few clusters or blobs that are approximately spherical, in shape. Although this 

arrangement may appear simple the presence of noise and different densities can make the clustering process 

more complicated. 

• Anisotropic Blobs: This dataset is a version of the typical blobs stretching them into elongated clusters. It 

serves as a test for algorithms to determine their ability to handle clusters with shapes rather, than just the 

usual spherical ones. Basic algorithms designed for clusters may face challenges when dealing with this 

dataset. 

• No Structure: The arrangement of points on this canvas seems random without any clear pattern or purpose. 

It poses a challenge, for algorithms to avoid fitting closely or attempting to categorize non-existent groups. 

• Twin Spiral: This complex dataset includes a pair of spirals that wrap around a centre. The intertwined 

pattern of the spirals poses a challenge, for clustering algorithms to differentiate between the two separate 

structures. 

   
Noisy Circles (3000 Points) Noisy Moons (3000 Points) Blobs (1500 Points) 

   
Anisotropic (1500 Points) No Structure (1500 Points) Twin Spiral (3000 Points) 

FIGURE 8. - Synthesized data structures and their visual representation. 

6.2 GAMMA VALUES AND THEIR BEARING ON CLUSTER DYNAMICS 

The gamma parameter plays a role in the SSNAL algorithm. It works like a dial that adjusts the sensitivity and 

responsiveness of the algorithm to data structures. By tweaking gamma, we can achieve outcomes in terms of clustering 

from highly segmented groups to more broadly categorized clusters. To gain an understanding of how the algorithm 

behaves we carefully plotted the number of clusters identified at different gamma values. Figure 9 provides a 

representation that highlights the algorithms stability and adaptability across diverse datasets. The graph demonstrates 
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the versatility of the SSNAL algorithm showcasing its ability to strike a balance, between segmentation and accurate 

cluster identification. 

   
Noisy Circles 

 ( , )  

Noisy Moons  

( , 15) 

Blobs  

( , ) 

   
Anisotropic  

( , ) 

No Structure  

( , ) 

Twin Spiral  

( , ) 

FIGURE 9. - Interplay of γ values and cluster dynamics across data types. 

6.3 THE PARADIGM OF CONVEX CLUSTERING: A COMPARATIVE ANALYSIS 

Convex clustering has been receiving interest because of its ability to effectively detect clusters and encourage 

both cohesion within clusters and separation, between clusters. This study provides a comparative analysis of convex 

clustering, specifically the SSNAL algorithm, in comparison to established methods such as k-means clustering, SC, 

GMM, DBSCAN and convex clustering. Further details and visual representations can be found in Figure 10.  

When analysing the Noisy Circles dataset, k-means faced challenges due to its inherent assumption of spherical 

clusters. In contrast, both SC and GMM effectively identified the circular structures. The DBSCAN, a density-based 

method, misclassified some data points as noise. 

K-means once again struggled to effectively cluster the Noisy Moons dataset, while SC aptly captured the moon 

shapes. GMM was slightly less effective, experiencing issues at the moon intersections, whereas DBSCAN was mostly 

successful. 

K-means, SC and GMM were all effective in clustering the Blobs dataset, which presents roughly spherical 

clusters. However, DBSCAN was more conservative, marking some data as noise. On the Anisotropic Blobs dataset, 

K-means had difficulty with non-spherical clusters. SC and GMM excelled, but DBSCAN flagged many points as 

noise. 

Regarding the No Structure dataset, both k-means and GMM tried to impose a structure that did not exist. 

DBSCAN recognized the lack of a clear density-based structure and classified most data points as noise. 

The Twin Spiral dataset posed a unique challenge. k-means and GMM failed to capture the intertwined spirals, 

while SC was successful. DBSCAN was mostly effective but identified some regions as noise. 

Convex clustering offers an alternative approach that bridges k-means and HC. It clusters data while penalizing 

differences in cluster centroids, allowing flexibility in shaping clusters. Convex clustering showed potential in handling 

noisy circles and noisy moons datasets, but its performance depended on the regularization parameter's tuning. The 

dataset of blobs exhibited performance to that of k-means. On the hand both SC and DBSCAN showcased their 

capabilities when it came to the twin spiral dataset. Convex clustering, in particular stood out by matching or even 

surpassing their performance. 

In summary, convex clustering has attributes that make it valuable, in the realm of data clustering. 

1. Robustness: Unlike techniques such as k-means, for clustering convex clustering demonstrates stability even 

when confronted with varying initial conditions. Nonetheless it remains necessary to select parameters in order 

to attain optimal performance. 
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2. Flexibility: Convex clustering is mainly used to identify clusters that have a convex-shape but it can also 

detect nonconvex patterns in specific situations. However, its effectiveness might differ depending on the 

characteristics of the dataset. 

3. Emphasis on Single Structure: One notable aspect of convex clustering is its focus on generating cluster 

assignments. This emphasis proves advantageous when handling noisy data or datasets with gradual 

transitions between clusters, aiming to create clear and coherent cluster structures. 

In applications, the choice of a clustering method should align with the inherent structure of the dataset, as there is 

no universally applicable solution for clustering tasks. In convex clustering, tuning the regularization parameter 

becomes crucial as it significantly influences the clustering outcomes. 

However, achieving results in this case heavily relies on selecting the right parameters and aligning them with the 

specific characteristics of the dataset. 

K-means DBSCAN SC GMM SSNAL CC 

     

     

     

     

     

     
FIGURE 10. - A panoramic view of clustering techniques. 

7. CHALLENGES AND FUTURE DIRECTIONS 

As the field of optimization for clustering high-dimensional data continues to evolve researchers encounter both 

new challenges and opportunities for innovation. In this section we will explore the obstacles that researchers face and 

discuss potential directions, for future research. 

7.1 ALGORITHMIC ENHANCEMENTS AND SCALABILITY 

The potential for refining clustering algorithms is vast, especially with the rapid growth of high-dimensional data. 

Challenges such as computational complexity and sensitivity to parameters have become increasingly prominent. 

Okazaki and Kawano [114] observed a need for enhanced weight construction methods beyond conventional 

techniques like k-nearest neighbours, which could effectively address these challenges. Additionally, Li et al. [106] 

highlighted the challenges posed by local minima and suggested exploring algorithms that ensure global optima 
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attainment or enhance robustness. There is also a pressing need for acceleration techniques, particularly for emerging 

clustering problems, as highlighted by Yuan et al. [99] and Shimmura et al. [101]. The scalability of clustering 

algorithms, especially in distributed environments, is another frontier yet to be fully explored, as indicated by Fodor et 

al. [102]. Lastly, investigating biconvex and nonconvex clustering methods, as discussed by Chakraborty and Xu [105], 

can provide greater flexibility in capturing intricate data structures. 

7.2 VISUALIZATION, INTERPRETABILITY, AND ROBUSTNESS 

Visualization and interpretability are crucial aspects of data analysis. However, the significant computational cost 

of convex clustering, as noted by Zhang et al. [90], poses a challenge, particularly for large-scale datasets. Addressing 

this challenge may involve the development of real-time dynamic visualization methods. Moreover, integrating sparse 

representations for denoising, as proposed by Weylandt et al. [91], can lead to clearer cluster formations. In addition to 

computational challenges, the increasing prevalence of noisy data demands clustering algorithms that are inherently 

robust against outliers, as emphasized by Quan and Chen [47]. Additionally, the automatic tuning of hyperparameters, 

which often requires careful calibration for optimal performance, remains an area with great potential for innovation. 

 

7.3 APPLICATIONS, INTEGRATION, AND INTERDISCIPLINARY RESEARCH 

Convex clustering techniques are increasingly being integrated into various disciplines, leading to novel 

interdisciplinary insights. In the field of medical and biological information learning, Yao and Allen [115] made 

significant advancements by introducing the clustered Gaussian graphical model (cGGM) in conjunction with a 

sophisticated symmetric convex clustering approach encapsulated within a singular, cohesive framework. This 

approach has proven to be highly effective, in identifying clusters linked to neurons. Complementing this, the potential 

of integrating biological prior knowledge into multi-omic data clustering, as highlighted by Shetta et al. [97], 

underscores the depth of insights that can be garnered through such sophisticated methods. Additionally, the realms of 

biclustering and tensor clustering, expanded upon by Chen and Suzuki [89] and Weylandt [78], present new avenues 

for innovative research. These methodologies are especially persistent given the complexity of higher-dimensional 

structures in data, which is a common challenge in biological data analysis. 

In document clustering, convex clustering is a collecting of text data documents into groups of similar documents. 

This is important in high-dimension data, where efficient handling of large size of textual acquaintance is critical. In the 

field of image processing, the adaptability and effectiveness of convex clustering have been further underscored by 

recent research. Wang et al. [74] developed a novel, robust convex clustering method characterized by its resilience to 

withstand noise and outliers, thereby significantly improving the dependability of clustering results in image datasets. 

Furthermore, Condat [116] has proposed a novel convex formulation of the k-means algorithm, uniquely designed for 

both clustering and image segmentation purposes. 

The interaction between convex clustering and contemporary machine learning approaches is quite interesting. 

This collaboration, especially when it comes to neural networks signifies a thrilling progress, in unsupervised feature 

acquisition paired with clustering. Consequently, it broadens the horizons of what can be accomplished through these 

methods. 

Furthermore, the application of convex clustering in community detection in networks with potentially highly 

skewed degree distributions, is limited by the assumption that all nodes in the same community are statistically 

equivalent and have equal expected degrees [117]. In the financial industry, the adaptive convex clustering model with 

iteratively weighted least squares-based algorithm (ACC-IWLS) [118], which is effectively used to predict the 

likelihood of purchases for personalized requests. The application of convex clustering techniques in fields, such, as 

healthcare and finance demonstrate its potential to generate new and valuable interdisciplinary insights. 

 

8. CONCLUSIONS 

This detailed review targeting data clustering evolving. Particularly on applications robustness of convex clustering 

techniques. This focus mainly involves SSNAL algorithm. Convex clustering is recognized as a robust alternative to 

traditional clustering methods, amalgamating the strengths of conventional approaches and ensuring globally optimal 

solutions. The meticulous examination of synthetic datasets in relation to the SSNAL algorithm has enriched our 

understanding of the interplay between data and algorithmic techniques. These datasets often possess unique structures 

that challenge the algorithm's adaptability and underscore the importance of parameter sensitivity, particularly the 

gamma value, in cluster formation. Comparatively, convex clustering demonstrates superior performance over 

traditional methods like k-means and DBSCAN, especially in maintaining intra-cluster cohesion and clear inter-cluster 

separation, even in complex data structures. Furthermore, integrating convex clustering with modern machine learning 

paradigms, such as deep neural networks, opens promising avenues for future research. Despite challenges such as 

computational constraints in large datasets and noise management in high-dimensional spaces, the continuous evolution 

of algorithmic techniques and their interdisciplinary applications indicates that efficient, scalable and interpretable 

solutions are forthcoming. 
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