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1. INTRODUCTION 

Scheduling, generally speaking, means assigning machines to jobs in order to complete all jobs under the imposed 

constraints[1] .,  . The problem is to find the optimal processing order of these jobs on each machine to minimize the 

given objective function. The scheduling problem is a set of  𝑛 jobs on a single machine. Even job 𝑗, 𝑗 ∈ 𝑁, where 𝑁 =
{1,… , 𝑛}   has an integer processed  time 𝑝𝑗,  due date 𝑑𝑗. Given schedule 𝛿 = (𝛿(1), 𝛿(2), … , 𝛿(𝑛)), then for each job 𝑗 

calculate the completion time by 𝐶1 = 𝑝1 and 𝐶𝑗 = ∑ 𝑝𝛿𝑘
𝑛
𝑘=1  for 𝑗 = 2,3, … , 𝑛. The lateness time of the job 𝑗 is defined 

by 𝐿𝑗 = 𝐶𝑗 − 𝑑𝛿𝑗. The earliness of job 𝑗 is specified via 𝐸𝑗 = 𝑚𝑎𝑥{0, −𝐿𝑗} = 𝑚𝑎𝑥 {𝑑𝛿𝑗 − 𝐶𝑗 , 0}, tardiness for job 𝑗, 𝑇𝑗 =

𝑚𝑎𝑥{0, 𝐿𝑗}, slack time for job 𝑗 is defined by 𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 , and late work through 𝑉𝑗 = 𝑚𝑖𝑛 {𝑇𝑗 , 𝑝𝛿𝑗} = 𝑚𝑖𝑛 {𝐶𝑗 −

𝑑𝛿𝑗 , 𝑝𝛿𝑗} . Thus, there is a total completion time ∑𝑗∈𝑁𝐶𝑗 , total late work ∑𝑗∈𝑁𝑉𝑗  and maximal earliness 𝐸𝑚𝑎𝑥 =

𝑚𝑎𝑥𝑗∈𝑁{𝐸𝑚𝑎𝑥}. With regard to the total completion time of 1// ∑𝐶𝑗 problem is minimized via SPT (short processing 

time) rule is optimum to Smith 1956 [2]. The maximal earliness regarding the 1//∑𝐸𝑗 problem has been minimized via 

Abstract: The presented study investigated the scheduling regarding 𝑛 jobs on a single machine. Each 𝑛 job will be 

processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing 

order with regard to jobs, minimizing total completion time ∑𝐶𝑗, total late work ∑𝑉𝑗, and maximal tardiness 𝐸𝑚𝑎𝑥  

which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined 

problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions 

∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is  introduced. Also, then the importance regarding the dominance rule (DR) that could be applied 

to the problem to improve good solutions will be shown. While in the practical part, two exact methods are important; 

a Branch and Bound algorithm (BAB) and a complete enumeration (CEM) method are applied to solve the three 

proposed MSP criteria by finding a set of efficient solutions. The experimental results showed that CEM can solve 

problems for up to n = 11 jobs. Two approaches of the BAB method were applied: the first approach was BAB 

without dominance rule (DR), and the BAB method used dominance rules to reduce the number of sequences that 

need to be considered. Also, this method can solve problems for up to 𝑛 = 20, and the second approach BAB with 

dominance rule (DR), can solve problems for up to 𝑛 = 60 jobs in a reasonable time to find efficient solutions to 

this problem. In addition, to find good approximate solutions, two heuristic methods for solving the problem are 

proposed, the first heuristic method can solve up to 𝑛 = 5000 jobs, while the second heuristic method can solve up 

to 𝑛 = 4000 jobs. Practical experiments prove the good performance regarding the two suggested approaches for 

the original problem. While for a sub-problem the experimental results showed that CEM can solve problems for up 

to 𝑛 = 10 jobs, the BAB without dominance rule (DR) can solve problems for up to 𝑛 = 15, and the second 

approach BAB with dominance rule (DR), can solve problems for up to 𝑛 = 30  jobs in a reasonable time to find 

efficient solutions to this problem. Finally, the heuristic method can solve up to 𝑛 = 4000 jobs. Arithmetic results 

are calculated by coding (programming) algorithms using (MATLAB 2019a) 
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the MST (i.e. minimum slack time) rule[3]. With regard to maximal tardiness for 1//𝑇𝑚𝑎𝑥 problem is minimized via the 

earliest due date rule (EDD) to Jackson 1955[4][5], the problems 1//∑𝐸𝑗 , 1//∑𝑉𝑗 , and 1//∑𝑇𝑗  are NP-hard. Any 

problem with cost functions as a sub-problem is NP-hard. 

In machine scheduling optimization problems with three criteria based on competing for objective functions, the Efficient 

Pareto optimal solutions set is formed as a vicarious of one optimal solution[6]. This set contains one (or more) solution(s) 

that, according to the objective functions, are superior to any other solution(s) [7]  . In the literature, there are two 

approaches for tri-criteria scheduling problems; the simultaneous approach and the hierarchical approach [8].The most 

important criteria in scheduling problems are total completion time, total late work, and maximum earliness. These 

criteria were considered in different conditions for jobs and machines. Since most scheduling problems are NP-hard [21], 

it makes sense to use heuristics to find an approximate solution to the problem. Smith [1] solved scheduling problem of 

bi-criteria. Tariq and Firas [9] suggested algorithms, which present all efficient solutions within effective range for 

problems 1//𝐹(∑𝑓𝑖, 𝑓𝑚𝑎𝑥), 1//𝐹(∑𝑓𝑖 , 𝑓𝑚𝑎𝑥 , 𝑔𝑚𝑎𝑥), in which ∑𝑓𝑖 = ∑𝐶𝑖 and 𝑓𝑚𝑎𝑥 , 𝑔𝑚𝑎𝑥 ∈ {𝐿𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥}. Oyetunji 

and Oluleye [10] used a heuristic approach to minimize the total completion time and number of tardy jobs simultaneously 

on a single machine with release date. Doha and Tariq [11] used branch and bound method to minimize the total 

completion time and maximum late work, and maximum earliness (∑𝐶𝑗 + 𝑉𝑚𝑎𝑥 + 𝐸𝑚𝑎𝑥). Hasson and Yousif [12] used 

CEM and BAB methods to minimize the (∑𝐶𝑗 , ∑𝑇𝑗 , ∑𝑉𝑗),and (∑𝐶𝑗, ∑𝑇𝑗 , 𝑉𝑚𝑎𝑥). Aseel et al., [13] branch and bound 

method (BAB) and heuristic Methods to minimize total completion time, total earliness ( ∑𝐶𝑗, ∑𝐸𝑗) in single-machine 

scheduling problems. Arik [14] introduced earliness/tardiness with grey processing times and common due date. Chachan 

and Aameed [15] used a BAB method and Local search algorithms to minimize the sum total completion time, total 

tardiness, total earliness and total late work ∑(𝐶𝑗 + 𝑇𝑗 + 𝐸𝑗 + 𝑉𝑗). Ibrahim et al., [16] used a BAB method to minimize 

multi-objective function ∑(𝐸𝑗 + 𝑇𝑗 + 𝐶𝑗 + 𝑈𝑗 + 𝑉𝑗). Hassan et al., [17] used a heuristic algorithm to minimize the sum 

of total completion time, maximum earliness, and maximum tardiness in a single-machine scheduling. Kramer and 

Submarian [18] introduced a unified heuristic for a large class of earliness-tardiness scheduling problems. 

   In this paper presents three criteria total completion time, total late work, and maximal tardiness for scheduling 

problems. We started by organizing it as a tri-criteria mathematical model and proposed a sub-problem with three 

objectives from the original problem. then, proposed exact methods to solve these problems, and BAB without DR and 

BAB with DR were implemented. Furthermore, two heuristic methods have been proposed, which have been adopted to 

find efficient solutions for this problem in a reasonable time. 

The remainder of this paper is outlined as follows: Section 2 describes the mathematical formulations of tri-criteria and 

analysis of the sub-problem for the proposed problem.  In Section 3, the exact, approximate methods and algorithms for 

solving the two problems given in the previous section were presented. Section 4 validates the proposed model and 

demonstrates the effectiveness of the proposed strategy through computational study and results, presenting the Results 

and Discussion in Section 5,6. Finally, conclusions and lists of future works are provided in Section 7. 

2.Mathematical Model  

In this section, the mathematical model of the single-machine scheduling problem for tri-criteria and tri-objective 

functions is proposed. First, we introduced some basic symbols and rules used in this work paper. 

 

ACT/S: Average of CPU-Time per second. 

ANEFS: Average number of efficient solutions. 

Av: Average. 

BAB (WDR): Branch and bound method with dominance rules.  

BAB (WODR): Branch and bound method without dominance rules.  

CT/S: CPU-Time per second. 

Earliest due date (EDD): Jobs are sequenced in non-decreasing order regarding their due dates 𝑑𝑗(where  𝑑1 ≤ 𝑑2 ≤

⋯ ≤ 𝑑𝑛), this rule utilized for minimizing 𝑇𝑚𝑎𝑥  for problem 1// 𝑇𝑚𝑎𝑥  [19] [4] [5]. 

EFSO (Efficient solution)[13]: A schedule 𝛼∗ is known as efficient solution or Pareto optimal or (non-dominated) If 

cannot find another schedule 𝛼 satisfying ℎ𝑗(𝛼) ≤ ℎ𝑗(𝛼
∗), 𝑗 = 1,2, . . , 𝑛, With at least one of the above considered a 

strict disparity. Another way is that 𝛼∗ is dominated by 𝛼 [17]. 

EXN: Example number. 

𝐹𝐶𝑉𝐸: Objective function of (𝑇𝐶𝑉𝑀𝐸) problem, and FSP is objective function of (𝑆𝑃) problem.      

Feasible Schedule (FS): Any schedule 𝛽 ∈ 𝑆 (where 𝑆 is the set of all schedules) can be considered feasible if it 

satisfies the constraints of the problem. 

Minimum Slack Time (MST): Jobs are sequenced in a non-decreasing order regarding their slack time 𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 

(where 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑛). For minimizing 𝐸𝑚𝑎𝑥  with the use of this rule [20]. 

MOF: Multi-objective function, and MCF is multi- criteria function.     
NEFS: Number of efficient Solutions.                  
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𝑛𝑖: The number of jobs, where 𝑖 is the number of problems tested. 

OF: Objective function regarding MSP could be either maximized or minimized under all possible constraints.                                          

Optimal (OP): The σ∗ schedule is considered as optimal in the case when there isn’t other schedule σ that satisfies 

𝑓𝑗(𝜎) ≤ 𝑓𝑗(𝜎
∗), 𝑗 = 1,… , 𝑘 (𝑘: No. of criteria), assuming a strict inequality for a minimum of one of the conditions 

that have been mentioned earlier. If not, then 𝜎 can be considered as dominant over 𝜎∗ [13].  

OPV: Optimal value of problem (𝑆𝑃), and EFV: efficient value of problem(𝑇𝐶𝑉𝑀𝐸).    
RL: 0 < Real < 1.                                                      

Shortest processing time (SPT): Jobs are sequencing in a non-decreasing order of processing times 𝑝𝑗 

(i. e. 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑛), this rule has been well known for minimizing ∑𝐶𝑗 for problem 1// ∑𝐶𝑗 [2]. 

 
2.1 The Mathematical Model for the 1// (∑𝑪𝒋, ∑𝑽𝒋, 𝑬𝒎𝒂𝒙) Problem. 

The aim of the problem is finding an efficient solution  that gives the minimum value of the tri-criteria total completion 

time ∑𝐶𝑗, total late work ∑𝑉𝑗, and maximal tardiness 𝐸𝑚𝑎𝑥, this problem is denoted by [21]:    

 

𝐹𝐶𝑉𝐸 = 𝑀𝑖𝑛(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥)                     

subject to                                                      

𝐶𝑗 ≥ 𝑝𝑗(𝛽),                              

𝐶𝑗 =∑𝑝𝑘

𝑗−1

𝑘=1

(𝛽) + 𝑝𝑗(𝛽),    

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗(𝛽),                      

𝐸𝑗 ≥ 𝑑𝑗(𝛽) − 𝐶𝑗 ,                      

𝑉𝑗 = 𝑚𝑖𝑛{𝑇𝑗 , 𝑝𝑗(𝛽)},               

𝑉𝑗 ≥ 0, 𝐸𝑗 ≥ 0, and 𝑇𝑗 ≥ 0,     

 

}
 
 
 
 

 
 
 
 

  𝑗 from 1 to 𝑛

}
 
 
 
 
 

 
 
 
 
 

        (1)    

 

This problem is referred to the (𝑇𝐶𝑉𝑀𝐸)-problem and it is complicated for determining an efficient solution because ∑𝑉𝑗 

was an NP-hard problem [22].  

 

For (𝑇𝐶𝑉𝑀𝐸)-problem,  sub-problem can be concluded that 1//(∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥) problem that referred to the (𝑆𝑃)-

problem, and it can be defined as follows:  

 

𝐹𝑆𝑃 = 𝑀𝑖𝑛(∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥)   

subject to                                             

𝐶1 = 𝑝1(𝛽),                              

𝐶𝑗 = ∑ 𝑝𝑘
𝑗−1
𝑘=1 (𝛽) + 𝑝𝑗(𝛽),     

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗(𝛽),                      

𝐸𝑗 ≥ 𝑑𝑗(𝛽) − 𝐶𝑗,                      

𝑉𝑗 = 𝑚𝑖𝑛{𝑇𝑗 , 𝑝𝑗(𝛽)},               

𝑉𝑗 ≥ 0, 𝐸𝑗 ≥ 0, and 𝑇𝑗 ≥ 0,     

 

}
 
 
 

 
 
 

  𝑗 from 1 to 𝑛

}
 
 
 
 

 
 
 
 

                        (2). 

 

In the following proposition, show that every optimal solution for (𝑆𝑃)-problem is an efficient solution to the (𝑇𝐶𝑉𝑀𝐸)-
problem.  

Proposition [21]: Every optimal solution of (𝑆𝑃)-problem is an efficient solution to the (𝑇𝐶𝑉𝑀𝐸)-problem.  

3.Methodology  

This section is devoted to examine the approaches for solving the (𝑇𝐶𝑉𝑀𝐸)-problem and (SP)-problem. For the exact 

approaches, the BAB is utilized as the main approach for solving the problems. Moreover, BAB without DR and BAB 

with DR were performed. Also, two heuristic methods were proposed and were adopted to find efficient solutions to this 

problem in a reasonable time. 
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3.1 Exact Solution for (𝑻𝑪𝑽𝑴𝑬)-Problem and (𝑺𝑷)-Problem 

We have presented two exact methods in this subsection. First method: The Complete enumeration method (CEM) 

was used as a simple approach that generates all of the feasible tables for chooses the optimal solution. Second method: 

The BAB method is the most popular scheduling solution approach; BAB is an illustration of the implicit enumeration 

method that could identify the optimal solution through methodically reviewing subsets of potential solutions. A search 

tree with nodes corresponding to these sub-sets has been utilized for describing BAB. 

 

The BAB method includes the following basic procedures: 

❖ The process of branching involves breaking the parent (original) problem down into at least two sub-problems. 

Sub-problems are expressed as nodes in a search tree. Alternatively, backward branching (in which the jobs are 

placed one after the other starting at the end). 

❖ The process of determining a lower bound on a sub-problem's optimal solution (i.e., nodes) is known as 

bounding. 

❖ The search strategy is a way of choosing a node in the search tree to branch from; typically, the branch is from 

the lower bound (LB) in the search tree, with the following:  

 ∎ If 𝐿𝐵 ≥ 𝑈𝐵, consequently, such subproblem cannot result in a better solution to the main problem. As a result, 

we do not need to create new branches from the branching tree's matching node. 

 ∎ If 𝐿𝐵 <  𝑈𝐵, then reset 𝑈𝐵 to take the value 𝐿𝐵, (i.e., replace 𝑈𝐵 with 𝐿𝐵). This procedure is repeated until all 

nodes (sub-clusters) had been tested. 

 

LB procedure: where 𝑁 denotes the set of all jobs, 𝑆 is the set of scheduled jobs, and 𝑈 is the set un-scheduled jobs, 

after that this procedure is: 

 

1- Start with empty set of scheduled jobs (i.e., 𝑆 = ∅), and start sorting the jobs (one by one) until get |𝑆| = 𝑛 − 1, 

and the 𝑛𝑡ℎ the job will be added to the set 𝑆 and after that solve the last sequence with the MST, at each one of 

the steps, calculate (∑𝐶𝑗 , ∑ 𝑉𝑗 , 𝐸𝑚𝑎𝑥) 

2- For the set 𝑈, jobs were sorted by SPT then calculated (∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) for all jobs in the sequence. 

3.1.1 BAB Method to Solve the (𝑻𝑪𝑽𝑴𝑬)-Problem  

In this subsection, we will use two BAB techniques to solve this problem. 
BAB without Dominance Rules (BAB(WODRs)) for the (𝑻𝑪𝑽𝑴𝑬)-problem  

This method could be summed up as follows: the lower bound LB for the non-sequenced section of each node will 

be based on the SPT rule, and the UB utilized will be based on the MST rule. The following are the BAB (WODR) steps: 

 

Algorithm 1: BAB(WODRs) Algorithm 

Step 1: Input 𝑛, 𝑝𝑗  and 𝑑𝑗 for 𝑗 = 1,2, … , 𝑛. 

Step 2: Let 𝒮 = 𝜑, for any 𝛼 define 𝐹𝐶𝑉𝐸(𝛼) = (∑𝐶𝑗(𝛼), ∑𝑉𝑗(𝛼), 𝐸𝑚𝑎𝑥(𝛼)). 

Step 3: Calculate an upper bound 𝑈𝐵  of the problem (𝑇𝐶𝑉𝑀𝐸)  through sorting jobs in 𝛼 = 𝑀𝑆𝑇 .   Calculate 

𝐹𝐶𝑉𝐸(𝛼) for 𝑗 = 1,2, … , 𝑛, let 𝑈𝐵𝐶𝑉𝐸 = 𝐹𝐶𝑉𝐸(𝛼) = (∑𝐶𝑗(𝛼), ∑𝑉𝑗(𝛼), 𝐸𝑚𝑎𝑥(𝛼)) at the parent node of the search tree. 

Step 4: For each node of the search tree of BAB approach and every partial sequence 𝜎 of jobs, compute 𝐿𝐵(𝜎) =

 cost of sequenced jobs  𝜎 for objective function + cost of un-sequenced jobs that have been obtained by sequence jobs 

in the SPT rule (where  𝜎 = 𝑆𝑃𝑇). 

Step 5: Branch from each node with 𝐿𝐵 ≤ 𝑈𝐵.  

Step 6: At the last level of the search tree, get a set of solutions, if 𝐹(𝜎) the result is indicated, 𝜎 is added to the set 𝑆 

unless they are dominated by efficient solutions that have been obtained previously in 𝒮, this process is called S 

filtering 𝑆. 

Step 7: End. 

 

BAB (WODR) solved the (𝑇𝐶𝑉𝑀𝐸)-problem up to 𝑛 = 20 in a reasonable amount of time. Also, another BAB which 

is based on DR (BAB (WDR)) is introduced to reduce the number of open nodes which saves time and increases n number 

of solved problems, since the search tree size (i.e., the number of the nodes) grows as the number of (n) increases in the 

(BAB) approach, particularly in the branching scheme. Thus, it is necessary to decrease this size by removing irrelevant 

solutions or choosing intriguing ones. The problem is being when the complementary subset of the solutions is stored, 
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one subset of the solutions is rejected. The goal of dominance rules is to reduce the available research on scheduling 

problems. Consequently, it shortens the search period and narrows the search area. 

 

 BAB with Dominance Rules (BAB(WDRs)) method for the (𝑻𝑪𝑽𝑴𝑬)-problem 

This method could be summarized as follows: each node's UB and LB for the un-sequenced portion will be based on the 

SPT rule. To decrease the number of branched (open) nodes, which saves time and increases the number of solved 

problems, this BAB depends on DR, by applying the following theory: 

 

Theorem [21]: If 𝑝𝑖 ≤ 𝑝𝑘  and 𝑑𝑖 ≤ 𝑑𝑘  then there’s an optimal schedule for (SP)-problem where the job 𝑖 processing 

before the job 𝑘. 

 

Algorithm 2: BAB(WDRs) Algorithm 

Step 1: Input 𝑛, 𝑝𝑗  and 𝑑𝑗 for 𝑗 = 1,2, … , 𝑛. Find adjacency matrix 𝑨. 

Step 2: Let 𝒮 = 𝜑, for any 𝛼 define 𝐹𝐶𝑉𝐸(𝛼) = (∑𝐶𝑗(𝛼), ∑𝑉𝑗(𝛼), 𝐸𝑚𝑎𝑥(𝛼))  

Step 3: Calculate an upper bound 𝑈𝐵 of the problem (𝑇𝐶𝑉𝑀𝐸) by sorting jobs in 𝛼 = 𝑆𝑃𝑇.   Calculate 𝐹𝐶𝑉𝐸(𝛼) for 𝑗 =

1,2, … , 𝑛, let 𝑈𝐵𝐶𝑉𝐸 = 𝐹𝐶𝑉𝐸(𝛼) = (∑𝐶𝑗(𝛼), ∑𝑉𝑗(𝛼), 𝐸𝑚𝑎𝑥(𝛼)) at the parent node of a search tree. 

Step 4: For every node of the search tree of BAB approach and every one of the partial sequences (𝜎 = 𝑆𝑃𝑇) of jobs, 

compute 𝐿𝐵(𝜎) =cost of sequenced jobs (𝜎)  for objective functions + cost of un-sequenced jobs obtained by a 

sequence of jobs in SPT rule 𝜎. 

Step 5: Branch from every node with 𝐿𝐵 ≤ 𝑈𝐵 and check 𝑖 → 𝑗.  

Step 6: At the last level of the search tree, get a set of solutions, if 𝐹(𝜎) the result is indicated,  𝜎 are added to the set 

S unless they are dominated by efficient solutions that have been obtained previously in 𝒮, this process is called 𝑆 

filtering 𝒮. 

Step 7: Stop. 

 

3.1.2 BAB Method for the(𝑺𝑷)-Problem  

For the (𝑆𝑃)-problem, use the same BAB that is used for the (𝑇𝐶𝑉𝑀𝐸)-problem, with some modifications indicated 

by BAB. First, calculate UB for (𝑆𝑃) -problem s.t.,  𝑈𝐵(𝛼 = 𝑆𝑃𝑇) = 𝐹𝑆𝑃(𝛼) = ∑𝐶𝑗(𝛼) + ∑𝑉𝑗(𝛼) + 𝐸𝑚𝑎𝑥(𝛼) , then 

calculate the LB of any node consisting of sequence and un-sequence parts (obtained by SPT rule) s.t., 𝐿𝐵(𝜎 = 𝑆𝑃𝑇) = 

𝐹𝑆𝑃(𝜎) = ∑𝐶𝑗(𝜎) + ∑𝑉𝑗(𝜎) +  𝐸𝑚𝑎𝑥(𝜎), where 𝜎 is the rule for un-sequenced jobs. Repeat these steps until an optimal 

solution is obtained from the root. 
 

3.2 Heuristic Methods for (𝑻𝑪𝑽𝑴𝑬)-Problem and (𝑺𝑷)-Problem  

Many research academics use approximate or heuristic algorithms to handle scheduling problems fast and efficiently 

since almost all of them are NP-hard and solving them using a CEM or BAB technique could be time-consuming [23]. 

Any algorithm or strategy that searches for optimum (nearly optimum) solutions in a reasonable period without an 

optimality guarantee in many cases is referred to as a heuristic (or approximation) strategy. In this subsection, we 

proposed two heuristics methods for solving the (𝑇𝐶𝑉𝑀𝐸)-problem and (𝑆𝑃)-problem that are discussed below: 
 

3.2.1 𝑺𝑬 − 𝑻𝑪𝑽𝑴𝑬 Heuristic method for Solving (𝑻𝑪𝑽𝑴𝑬)-Problem and (𝑺𝑷)-Problem  

     𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 method was presented in this subsection to solve the  (𝑇𝐶𝑉𝑀𝐸)-Problem  [24].  The objective function 

using the SPT rule was calculated firstly. Then put the third job in the second position and the other jobs are still ordered 

depending on the SPT rule and calculate the objective function, etc. until n sequences are obtained, then repeat the same 

procedures when using the EDD rule, as described below: 

 

Algorithm 3: 𝑺𝑬 − 𝑻𝑪𝑽𝑴𝑬 Heuristic Algorithm 

Step 1: Input: 𝑛, 𝑝𝑗  𝑎𝑛𝑑 𝑑𝑗 , 𝑗 = 1,2, … , 𝑛, 𝒮 = 𝜑. 

Step 2: Arrange the jobs in the SPT rule (𝛽1) and calculate 𝐹11(𝛽1) = (∑𝐶𝑗(𝛽1), ∑𝑉𝑗(𝛽1), 𝐸𝑚𝑎𝑥(𝛽1)); 𝒮 = 𝒮 ∪

{𝐹11(𝛽1)}. 

Step 3: For 𝑖 = 2, . . . , 𝑛, put the job 𝑖 in first position of  𝛽𝑖−1 to get 𝛽𝑖 and calculate 𝐹1𝑖(𝛽𝑖) =

(∑𝐶𝑗(𝛽𝑖), ∑𝑉𝑗(𝛽𝑖), 𝐸𝑚𝑎𝑥(𝛽𝑖)); 𝛼 = 𝛼 ∪ {𝐹1𝑖(𝛽𝑖)}.  

End; 

Step 4: Arrange the jobs in the EDD rule (𝜎1) and calculate 𝐹21(𝜎1) = (∑𝐶𝑗(𝜎1), ∑𝑉𝑗(𝜎1), 𝐸𝑚𝑎𝑥(𝜎1)); 𝒮 = 𝒮 ∪

{𝐹21(𝜎1)}. 
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Step 5: For 𝑖 = 2, . . . , 𝑛, put the job 𝑖 in first position of 𝜎𝑖−1 to get 𝜎𝑖 and calculate 𝐹2𝑖(𝜎𝑖) =

(∑𝐶𝑗(𝜎𝑖), ∑𝑉𝑗(𝜎𝑖), 𝐸𝑚𝑎𝑥(𝜎𝑖)); 𝒮 = 𝒮 ∪ {𝐹2𝑖(𝜎𝑖)}.  

End; 

Step 6: A filter set 𝒮  to obtain a set of efficient solutions to problem (𝑇𝐶𝑉𝑀𝐸). 

Step 7: Output: the set of efficient solutions 𝒮. 

Step 8: End. 

 

3.2.2 𝑫𝑹 − 𝑻𝑪𝑽𝑴𝑬 Method for Solving (𝑻𝑪𝑽𝑴𝑬)-Problem and (𝑺𝑷)-Problem  

  

The second heuristic method is (𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸)  depends on dominance rules. 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 summarized by finding the 

sequence sort with a minimum of 𝑝𝑗  and 𝑑𝑗, which isn’t inconsistent with dominance rules, and calculating the 

objective function. 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸  algorithms can be summarized in the following steps: 

 

Algorithm 4: 𝑫𝑹 − 𝑻𝑪𝑽𝑴𝑬  Heuristic Algorithm 

Step 1: Input:  𝑛, 𝑝𝑗  𝑎𝑛𝑑 𝑑𝑗 , 𝑗 = 1,2, … , 𝑛. 

Step 2: Apply remark or theorem (1) to find the DRs and corresponding adjacent matrix 𝐴; 𝑁 = {1,2, … , 𝑛} calculate 

𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 , ∀𝑗 ∈ 𝑁, 𝒮 = 𝜑. 

Step 3: Find a sequence 𝛼1 with a non-increasing order of 𝑝𝑗 that does not conflict with DR (matrix A), if it is more than 

one job order 𝛼1 by 𝑑𝑗, then  𝒮 = 𝒮 ∪ {𝛼1}. 

Step 4: Find a sequence 𝛼2 with a non-increasing order of 𝑑𝑗 does not conflict with the DR (matrix A), if there is more 

than one job that breaks links arbitrarily order 𝛼2 by 𝑝𝑗, then 𝒮 = 𝒮 ∪ {𝛼2}. 

Step 5: Find the dominant sequence set  𝒮′ from 𝒮. 

Step 6: Calculate 𝐹𝐶𝑉𝐸(𝒮
′). 

Step 7: Output: Effective solution set 𝒮′. 

Step 8: END 

 

4. Practical Results of (𝑻𝑪𝑽𝑴𝑬)-Problem and (𝑺𝑷)-Problem   
In this section, the results for applying the Exact, heuristic methods for the (𝑇𝐶𝑉𝑀𝐸)- problem and (𝑆𝑃)-problem will 

be compared. The CEM is tested by programming it using MATLAB 2019a. Since we deal with the MSP, so the 𝑝𝑗  and 𝑑𝑗  

values are randomly generated for  five examples s.t. s𝑝𝑗 ∈ [1,10] and 𝑑𝑗 ∈ {

[1,30] 1 ≤ 𝑛 ≤ 29
[1,40] 30 ≤ 𝑛 ≤ 99
[1,50] 100 ≤ 𝑛 ≤ 999
[1,70] othierwise

 , with condition 

𝑑𝑗 ≥ 𝑝𝑗, for 𝑗 = 1,2, … , 𝑛. 

4.1 Comparison Results of the (𝑻𝑪𝑽𝑴𝑬)-Problem  
This subsection introduced the results the exact and the heuristic methods for the 𝑇𝐶𝑉𝑀𝐸-problem. The efficient 

results of applying CEM method for the (𝑇𝐶𝑉𝑀𝐸)-problem are presented in Table 1. 

Table 1.- The efficient results of applying CEM for the (𝑇𝐶𝑉𝑀𝐸)-problem when  𝑛 = 4,5, … ,10. 

EXN 

𝑛5 

CEM 

EF TIME NES 

𝐴𝑉(𝐹𝐶𝑉𝐸) ACT/S ANEFS 

4 (57.4, 2.5,15.8) RL 6.4 

5 (88.2,7.2,12.3) RL 7.2 

6 (110.2,11.6,13.4) RL 15.2 

7 (128.1,14.2,10.9) RL 25.6 

8 (150.9,16.0,11.8) RL 20.8 

9 (216.4, 25.9,8.5) 8.2 21.2 

10 (205.0,18.3, 12.1) 87.2 40 

11 (301.0,35.5,8.3) 989.0 26.8 
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The efficient results of applying BAB without DR and BAB with DR for the (𝑇𝐶𝑉𝑀𝐸)-problem, for different 𝑛 are 

shown in Table 2.  

 

Table 2.- A comparison results between BAB without DR and BAB with DR for (𝑇𝐶𝑉𝑀𝐸)-problem, for different  𝑛. 

 

 

Comparison efficient results between 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 and 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 for the (𝑇𝐶𝑉𝑀𝐸)-problem are shown in Table 

3, for different 𝑛. 

 

Table 3. Comparison efficient results between 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 and 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 for the (𝑇𝐶𝑉𝑀𝐸)-problem,for different 𝑛. 

 

EXN 

𝑛5 

𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 

MCF TIME NES MCF TIME NES 

𝐴𝑉(𝐹𝐶𝑉𝐸) ACT/S ANEFS 𝐴𝑉(𝐹𝐶𝑉𝐸) ACT/S ANEFS 

4 (56.1,2.7,16.8) RL 5.0 (58.8,4,15.6) RL 3.6 

5 (85.3,9.9,14.1) RL 3.4 (88.1,8.4,12.4) RL 3.4 

6 (108.3,16.2,16.5) RL 5.4 (114.4,13.9,13.5) RL 4.2 

7 (125.4,17.9,13.3) RL 6.2 (135.5,15.8,12.4) RL 5.2 

8 (150.9,20.2,14.4) RL 5.8 (161.7,17.9,12.9) RL 5.8 

9 (216.0,33.3,10.1) RL 4.8 (247.6,30.6,9.8) RL 7.4 

10 (216.7,25.9,14.4) RL 8.0 (234.1,22,12) RL 6.2 

11 (301.2,42.0,11.4) RL 6.6 (347.9,39.7,9.8) RL 9.2 

40 (3784.3,213.2,11.1) RL 17.2 (4278.1,206.6,9.1) RL 16.6 

EXN 

𝑛5 

BAB(WODR)LB=SPT, UB=MST BAB(WDR)LB=SPT, UB=MST 

MOF TIME NES MOF TIME NES 

𝐴𝑉(𝐹𝐶𝑉𝐸) ACT/S ANEFS 𝐴𝑉(𝐹𝐶𝑉𝐸) ACT/S ANEFS 

4 (57.5,2.5,15.8) RL 6.4 (57.5,2.5,16.5) RL 5.4 

5 (87.3,7.4,12.1) RL 6.6 (99.7,12.7,13.9) RL 3.2 

6 (110.0,11.8,13.5) RL 14.8 (115.6,18.3,14.5) RL 9.6 

7 (128.4,14.5,10.8) RL 24.0 (127.2,18.2,11.1) RL 11.0 

8 (151.0,16.1,12.0) RL 20.2 (125.7,14.4,13.9) RL 13.0 

9 (214.6,26.2,8.4) RL 18.2 (190.0,27.5,11.1) RL 6.8 

10 (209.6,18.7,11.3) RL 31.6 (192.3,19.3,13.3) RL 19.2 

11 (303.3,36.2,8.3) RL 24.8 (280.7,36.5,9.7) RL 12.4 

12 (351.2,43.5,10.1) RL 45.6 (332.5,48.2,11.9) RL 20.8 

13 (383.5,43.1,7.7) RL 33.4 (352.7,44.6,11.4) RL 17.0 

14 (471.9,55.5,7.0) 1.0 32.6 (457.3,61.1,8.1) RL 7.2 

15 (509.3,57.3,9.2) RL 45.0 (495.0,60.1,10.8) RL 22.2 

16 (538.6,60.5,9.0) 2.9 71.2 (521.6,67.2,13.5) RL 18.2 

17 (644.8,71.4,9.6) 264.7 69.6 (627.4,78.4,12.2) RL 15.8 

18 (711.5,74.4,11.1) 17.6 69.2 (692.4,80.4,13.3) RL 28.0 

19 (743.0,77.3,8.6) 36.5 48.6 (702.1,80.1,10.2) RL 21.6 

20 (825.5,78.8,10.8) 10541.0 96.8 (775.3,81.8,12.3) RL 36.4 

21 - - - (828.7,83.6,12.0) RL 31.4 

22    (1045.1,106.6,11.7) RL 20.0 

23 - - - (1227.2,114.3,10.3) RL 18.4 

24 - - - (1270.8,119.7,14.1) RL 34.6 

25 - - - (1419.2,129.1,11.0) RL 21.4 

30 - - - (1937.2,154.7,10.4) RL 17.2 

40 - - - (3318.9,206.8,8.2) RL 29.4 

50 - - - (4950.5,255.8,11.4) 11.8 42.6 

60 - - - (6775.1,298.1,9.8) 488.4 31.4 

70 - - - (9714.7,363.3,11.3) 654.1 48.4 
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60 (8112.9,311.9,9.1) RL 18.4 (8944.9,303.1,9.9) RL 18.0 

80 (15712.3,439.7,10.9) RL 24.6 (16660.2,428.5,10.0) RL 20.4 

100 (25252.1,560.8,10.3) RL 29.4 (25593.4,548.9,8.9) RL 17.6 

400 (397689.0,2198.4,7.8) 1.3 49.8 (341777.7,2187.0,7.6) 1.6 20.4 

600 (887871.4,3279.7,7.7) 2.5 53.2 (753053.7,3267.8,9.0) 3.5 34.0 

800 (1585853.4,4415.1,7.1) 4.2 51.0 (1351124.3,4403.8,8.8) 6.6 40.4 

1000 (2500484.0,5509.3,8.6) 6.3 67.6 (2095245.3,5498.9,8.5) 10.7 39.6 

2000 (10096117.5,11005.7,9.6) 28.8 80.6 (8328351.8,10995,8.7) 78.3 38.0 

3000 (22453017.4,16472.7,8.8) 83.2 73.0 (18748013.8,16462.3,8.7) 274.8 36.8 

4000 (40284000,22045.4,9.2) 186.3 77.4 (33463280.3,22034.9,8.6) 658.1 37.8 

5000 (62627693.8,27452.2,8.5) 344.9 72.2 - - - 

 

4.2 Comparison results of (𝑺𝑷)-problem  
In this subsection, the optimal results of applying the exact methods will be compared with the heuristic methods 

for the (𝑆𝑃)-problem.  

The optimal results of applying  BAB (WODR), and BAB (WDR) that were put to comparison with the CEM for the 
(𝑆𝑃)-problem have been listed in Table 4, for different 𝑛 

 

Table 4.- Comparison optimal results of BAB (WDR) and BAB (DR) with CEM for (𝑆𝑃)-problem, for different 𝑛 

 

 

EXN 

𝑛5 

CEM BAB(WODR) 

LB=SPT=UB 

BAB(WDR) 

LB=SPT=UB 

MOF TIME MOF TIME MOF TIME 

𝐴𝑉(𝐹𝑆𝑃) ACT/S 𝐴𝑉(𝐹𝑆𝑃) ACT/S 𝐴𝑉(𝐹𝑆𝑃) ACT/S 

4 72.2 RL 72.2 RL 72.2 RL 

5 103.4 RL 103.4 RL 104.4 RL 

6 128.8 RL 129.4 RL 133.6 RL 

7 144.2 RL 144.2 RL 147.8 RL 

8 169 1.0 169.0 RL 169.4 RL 

9 242 9.1 242.0 RL 245.4 RL 

10 224 95.7 224.4 RL 227.0 RL 

11 329 1048.0 329.0 1.6 333.0 RL 

12 - - 388.8 10.2 393.8 RL 

13 - - 405.4 RL 408.2 RL 

14 - - 523.6 110.4 528.2 RL 

15 - - 529.0 599.9 554.4 RL 

20 - - - - 896.6 RL 

21 - - - - 1085.0 RL 

22 - - - - 1102.2 RL 

23 - - - - 1053.6 RL 

24 - - - - 1361.6 RL 

25 - - - - 1609.0 13.9 

26 - - - - 1460.2 4.2 

27 - - - - 1790.8 9.5 

28 - - - - 1648.8 2.9 

29 - - - - 2012.0 64.3 

30 - - - - 2110.4 599.8 

 

The optimal results of applying 𝑆𝐸 − 𝑆𝑃 and 𝐷𝑅 − 𝑆𝑃 that were put to comparison with CEM for the (𝑆𝑃)-problem 

are presented in Table 5, 𝑛 = 4, 5, …, 10. 
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Table 5.- Comparison optimal results between 𝑆𝐸 − 𝑆𝑃 and 𝐷𝑅 − 𝑆𝑃 with CEM for the (𝑆𝑃)-problem 𝑛 = 4, 5, …, 10. 

 

EXN 

𝑛5 

CEM 𝑆𝐸 − (𝑆𝑃) 𝐷𝑅 − (𝑆𝑃) 

MOF TIME MOF TIME MOF TIME 

𝐴𝑉(𝐹𝑆𝑃) ACT/S 𝐴𝑉(𝐹𝑆𝑃) ACT/S 𝐴𝑉(𝐹𝑆𝑃) ACT/S 

4 72.2 RL 72.4 RL 72.4 RL 

5 103.4 RL 105.0 RL 106.6 RL 

6 128.8 RL 135.4 RL 133.0 RL 

7 144.2 RL 149.8 RL 151.6 RL 

8 169 1.0 177.0 RL 178.4 RL 

9 242 9.1 248.4 RL 252.2 RL 

10 224 95.7 231.0 RL 230.4 RL 

 
Table 6 presents the optimal results of applying 𝑆𝐸 − 𝑆𝑃 and 𝐷𝑅 − 𝑆𝑃 for the (𝑆𝑃)-problem, for different 𝑛. 

 

Table 6.- Comparison optimal results between 𝑆𝐸 − 𝑆𝑃 and 𝐷𝑅 − 𝑆𝑃 for problem (𝑆𝑃) for different 𝑛. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  Results and Discussion 
Analyze the results by discussing the (𝑇𝐶𝑉𝑀𝐸)-problem: 

• The CEM starts to give the minimum values for the 1//(∑𝐶𝑗, ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) problem compared to the results for 

the BAB up to 𝑛 ≤ 11. Also, CEM takes a long time in the CPU-Time compared to BAB. Moreover, BAB 

(WODR) starts giving the minimum values for the 1//(∑𝐶𝑗, ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) problem compared to the results for 

BAB (WDR) , for 𝑛 ≤ 7, look at Tables 1, 2. while, BAB (WDR) performs better than BAB(WODR), for 𝑛 >

7, and the BAB without DR solved the problem in all cases from 𝑛 = 4 to 𝑛 = 20,  but failed to solve the 

problem when 𝑛 > 20, while BAB with DR solved the problem in all cases from 𝑛 = 4 to 𝑛 = 70, but failed 

to solve the problem when 𝑛 > 70.  

• The CEM gives better results compared to the heuristic method 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 ,  𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸  for problem 

1//(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥). In addition, CEM takes a long time in the CPU-Time, while the heuristic method 

𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 gives better results than 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 for 𝑛 ≤ 11, look at Table 1,3. 

• The heuristic method 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 gives better results than 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 for problem 1//(∑𝐶𝑗, ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) up 

to 𝑛 ≤ 400, while heuristic method 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 gives better results than 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 for problem 𝑇𝐶𝑉𝑀𝐸 up 

EXN 

𝑛5 

𝑆𝐸 − (𝑆𝑃) 𝐷𝑅 − (𝑆𝑃) 

  MOF TIME MOF TIME 

𝐴𝑉(𝐹𝑆𝑃) ACT/S 𝐴𝑉(𝐹𝑆𝑃) 𝐴𝑉(𝐹𝑆𝑃) 

40 3532.8 RL 3530.0 RL 

60 7299.6 RL 7302.2 RL 

80 13561.2 RL 13559.2 RL 

100 21173.4 RL 21171.0 RL 

400 312828.0 2.0 312818.0 1.9 

600 697042.2 3.1 697034.8 4.3 

800 1245294.0 5.6 1245287.2 9.5 

1000 1940975.0 9.1 1940967.4 18.9 

2000 7724281.6 14.8 7724272.6 30.4 

3000 17330649.2 42.0 17330640.0 107.9 

4000 30937071.0 91.4 30937060.4 257.5 
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to 𝑛 ≥ 400, observe Table 3. Furthermore, 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 was successful in resolving all issues 𝑛 ≤ 4000 and 

failed to solve all problems for 𝑛 > 4000, 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 was successful in resolving all issues 𝑛 ≤ 5000 and 

failed to solve all problems for 𝑛 > 5000. 

Analyze the results by discussing the (𝑆𝑃)-problem: 

 

• The results of applying BAB (WODR) are identical to CEM, but CEM takes a long time compared to BAB 

(WODR) and starts to give minimum values for the problem 1// ∑𝐶𝑗 +∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 compared to the results of 

BAB (WDR). In addition, BAB (WODR) takes a long time in CPU time compared to BAB (WDR), look at 

Tables 4. Also, CEM was successful in resolving all issues 𝑛 ≤ 11, and failed to solve all problems for 𝑛 >

11, BAB (WODR) was successful in resolving all issues 𝑛 ≤ 15, and failed to solve all problems for 𝑛 > 15, 

and BAB (WDR) was successful in resolving all issues 𝑛 ≤ 30, and failed to solve all problems for 𝑛 > 30 

• The CEM gives better results than the heuristic methods 𝐷𝑅 − 𝑆𝑃, and 𝑆𝐸 − 𝑆𝑃. Also, CEM takes a long time 

compared to 𝐷𝑅 − 𝑆𝑃 and 𝑆𝐸 − 𝑆𝑃 for problem 𝑆𝑃, and 𝑆𝐸 − 𝑆𝑃 gives better results than 𝐷𝑅 − 𝑆𝑃 for 

problem 1// ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 up to 𝑛 = 4: 10. On the other hand, heuristic methods solve problems with 

𝑛 ≤ 4000 and require less processing time, look at the Tables 4,6. 

• In general, the BAB application results are better when compared to heuristic methods, more specifically the 

BAB (WODR) application results are better when compared to those of the BAB(WDR) application and 

heuristic methods, which also shows that BAB with DR solved all cases of the problem from n = 4 to n = 15, 

and BAB without DR failed to solve all problems for 𝑛 > 15, see Tables 4,5,6.  

• The heuristic method  𝐷𝑅 − 𝑆𝑃 gives better results than 𝑆𝐸 − 𝑆𝑃 for problem 1// ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥   for 

different 𝑛, which also takes a long time compared to 𝑆𝐸 − 𝑆𝑃, moreover. Heuristic strategies were successful 

in resolving all issues 𝑛 ≤ 4000 and failed to solve all problems for 𝑛 > 4000, see Tables 6. 

6. Main Results 

1. The practical results of this research demonstrated the efficiency of the proposed methods: exact methods (CEM 

and BAB) for the two problems. 

2. For 1//(∑𝐶𝑗 , ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) problem, 𝑛 ≤ 11, CEM performs better than BAB and heuristic methods in accuracy 

but takes a long time in the CPU-Time, for 𝑛 ≤ 7,  the performs of BAB(WODR) is better than BAB(WDR), 

while, BAB (WDR) performs better than BAB(WODR), for 𝑛 > 7. In addition, for 𝑛 ≤ 400, the performs of 

 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 is better than 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸, while, 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 performs better than 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸, for 𝑛 ≥ 400. 

3. For 1// ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 problem, 𝑛 ≤ 11, the performs of CEM and BAB (WODR) are identical and, better 

than BAB (WDR) and heuristic methods in accuracy, but CEM takes a long time in the CPU-Time. In addition, 

the performs of  𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 is better than 𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸, for all 𝑛. 

7.  Conclusions and Future Works 

 
In this paper, the tri-criteria machine scheduling problems are solved, where the discussed problem is represented by 

the 1//(∑𝐶𝑗 , ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), and from this problem can be derived a sub-problem 1//(∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥). In this paper, two 

techniques of BAB methods are introduced to solve the two problems (𝑇𝐶𝑉𝑀𝐸) and (𝑆𝑃) problems, with and without 

dominance rulers, and the results demonstrate the accuracy of the BAB results. Introduced two new heuristic methods 

𝑆𝐸 − 𝑇𝐶𝑉𝑀𝐸 and 𝐷𝑅 − 𝑇𝐶𝑉𝑀𝐸 with good performance for the two studied problems. 

The next MSPs will make intriguing subjects for future study. 
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• 1// 𝐿𝑒𝑥(∑𝐶𝑗 , ∑ 𝑉𝑗 , 𝐸𝑚𝑎𝑥). 

• 1// 𝐿𝑒𝑥(∑𝑉𝑗 , ∑ 𝐶𝑗 , 𝐸𝑚𝑎𝑥).  

• 1// 𝐿𝑒𝑥(𝐸𝑚𝑎𝑥 , ∑ 𝐶𝑗 , ∑ 𝑉𝑗). 
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