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1. Introduction 

Non-linear systems are found in the real world, and linear models cannot describe their complexity. Non-linear 

time series modelling is challenging in many practical applications. Identifying the best models for noisy or volatile 

data is difficult. It is also hard to determine the numerous unknown parameters in the model. To understand how the 

system works, we use the input-output model. It helps describe the dynamics and link input and output information. 

This lets us create time series models better to describe the data. 

We begin with a model called NARMAX, which was introduced by Billings in 1981 [1]. Leontaritis and Billings 

extensively studied and improved this model in 1985 [2]. Since then, researchers have conducted numerous studies. In 

2009, Rahrooh and Scot conducted a study on identifying non-linear systems. A broad range of non-linear systems may 

be represented uniformly by the NARMAX model. In 2019 [3], Billings and Hua-Liang showed that this model is 

better than the linear model. It can estimate parameters and make accurate predictions. In 2019, Retes and Luis 

proposed the RaMSS method for NARMAX model structure selection [4]. Yu and Miaolei also studied NARMAX 

models the same year [5]. The NARMAX model is a machine learning approach that is sparse, interpretable, and 

transparent [6]. 

Harvey and Tirthankar (2008) introduced the beta-t-EGARCH model [7], a type of dynamic point model. Nelson's 

(1991) exponential GARCH model is expanded. The conditional variance is estimated using the Beta-t distribution. The 

conditional variance is logarithmically transformed [8]. Researchers presented several studies on this model. For 

instance, Blazsek and Villatoro asked if Beta-t-EGARCH (1, 1) is better than GARCH (1, 1) [9]. Blazsek and Mendoza 

compared ARMA-GARCH and QARMA-Beta-t-EGARCH [10]. Liao et al. worked on improving the MS-Beta-t-

EGARCH method, a statistical technique [11]. Ayala et al. focused on quasi-autoregressive QAR and Beta-t-EGARCH 

[12]. 

Radial Basis Function Neural Networks are a popular supervised learning algorithm. This network has been used 

in healthcare, data processing, and pattern classification. Powell introduced it in 1985 to solve interpolation problems in 

data centres [13]. Gholam et al. conducted a study to explore various methods to determine the centres, widths, and 
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synaptic weights of RBFNN [14]. Que and Belkin analyse two common regularisation procedures. [15]. Bugshan et al. 

also proposed a model that uses Gaussian RBF criteria for specific training [16]. 

2. Non-linear Modelling: 

Mathematical modelling is a process that includes several stages and cycles. To start, estimate the math model in a 

class of models using input-output data. However, before estimating model parameters, it is necessary to know the 

architecture of the model. In non-linear math modelling, it is important to structure the model correctly. This helps 

define the parameters accurately. Non-linear modelling is divided into four basic stages: determining the class of 

models, investigating the structure of the model, estimating the parameters, and validating the model system by 

comparing the model's predictions to the behaviour of the actual system [3]. 

 

Figure.1. Non-linear time series modelling process[3] 

2.1. NARMAX Model: 

NARMAX is a flexible, non-linear model that can represent a wide range of dynamical systems. Parameter 

estimation uses the least squares approach. for Model structure selection uses error reduction ratio criteria. 

The NARMAX model is a unified representation of a broad class of non-linear systems. If the system is linear, it 

can be represented by the linear difference equation form, which can be limited to the equation: 

…(1) 

 

 

where  and  are order free from white noise the order of the output , and  respectively, while  and  the 

parameters for the system, and  is input delay. 

In a non-linear system, we can use the NARX model or develop it further. This helps us derive the NARMAX 

model, which can become the formula. 

…(2)  

 

 

where  is the non-linear function, , and  are output, input signal, and white noise, respectively, , and 

 the maximum lags [2]. 

The NARMAX model is better than other models for analysing data. It can handle noise signals that are related or 

have different colours. It can represent the signals in a linear or non-linear way. By expanding equation 2, we get: 

…(3) 

 

 

In equation (3), it contains white noise. This means that it cannot be directly measured or observed in the model 

selection procedure.  To estimate the noise signal, the residual sequence of the model is often used instead, which 

represents the difference between the actual output and the expected output of the model. 
…(4) 
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where  is the estimator of . 

Thus, the  in equation (3) can be replaced by the  given in equation (4). The NARMAX model is a machine 

learning approach designed to be sparse, interpretable, and transparent. It uses a small number of variables, is easy to 

understand and explain, and provides insights into the underlying data [3],[4]. 

2.1.1. Parameter Estimation of the NARMAX Model: 

If the model structure is known and the model is linear in the parameters, a least squares method can be used to 

estimate the parameters of the NARX part first and then use the residual as the  data to estimate the full NARMAX 

model. Where  is updated with the new residual, and the estimation process is repeated until the stopping criterion is 

reached. 

It is done in detail by following the following steps: We rewrite equation (2) by setting 

, and , then we get: 

…(5) 
 

 

…(6) 

 

 

where  is a non-linear coefficient. 

We assume that the output signal  generates zero mean noise , which indicates that the measured output signal 

is  

…(7) 
 

 
Substituting equation (7) into equation (6), we get:  

…(8) 

 

 

 

 

 

where  is a higher-order term. 

The model in equation (8) is 'linear in parameter', but it introduces cross-product terms between the noise and the 

input and output signals of the process, making it a non-linear model. The solution of equation (8) is a very complex 

process that is impossible to solve directly, so it must be reformulated in the predictive errors model, which can be 

expressed as equation (9):  

…(9)  

 

 

where , , and ,  is the 

number of added noise terms. 

Equation (9) can be expanded and regrouped to produce equation (10), which separates the unknown parameters.  

…(10) 

 

 

 

 

where  and  are functions in terms of  and , in terms of , ,  and in terms of , respectively. 
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How the unknown parameters relate to the coefficients and polynomial terms can be illustrated in the following 

equation: 

 
 

 

…(11) 

 

 

Then  and . From which we get 

, that gives: 

…(12) 
 

 

Equation (12) shows how the model can be expressed as the sum of the expected output and the error term, which 

is highly correlated and can lead to biased parameter estimates. The algorithm based on least squares is a good choice 

for parameter estimation[3],[17]. 

2.1.2. Structure Detection of the NARMAX Model: 

The problem of model structure selection is a critical step in the determination of the non-linear system. In this 

problem, the goal is to select a subset of regression factors from a set of  from  regressions to construct the 

final model. Normalise it with respect to the output variance. The error reduction ratio (ERR) generated by including 

the  regression factor in the model can be calculated using a specific formula. The formula takes into account the 

variance of the residuals before and after the regression coefficient is included in the model. The ERR is a useful 

criterion for selecting the most relevant regression factors for the final model, as it quantifies the improvement in model 

accuracy due to the inclusion of each regression factor. ERR is widely used in non-linear system determination and has 

been shown to be effective in selecting the most appropriate regression factors for the final model [4]. Which can be 

expressed by the equation: 

…(13) 
 

 

where  is Mean Square Production Error with one-step forward, with -terms regressors, amount of candidate 

terms is  it has been examined, and  represents a family of related models  nesting structures.  The text of equation 

(13) indicates and explains the numerator and denominator of the equation. The equation counter represents the 

decrease in variance in the residual values due to the inclusion of the -th regression operator. In other words, it 

measures to what extent the inclusion of a particular regression factor reduces the error in the model predictions, while 

the denominator of the equation represents the data variance, i.e., it is a measure of the data variance around the mean, 

so that it is used to normalise the numerator and obtain a measure of the relative importance of each regression factor. 

And that    is a method used to choose the model based on the prediction error of the model. It is useful because it 

can be represented in a compact form [5] as 

…(14) 
 

 

where  is the estimation parameter, and  is -th orthogonal regression. An expansion of  is the Error 

Reduction Ratio two-step forward  presented by Alves et al. in 2012 [18]. In addition to this extension, there are 

other parameters, such as the Simulation Error Reduction Ratio (SRR), introduced by Piroddi and Spinelli in 2003 [19]. 

We discuss here the importance of understanding that there is no clear distinction between 'true' and 'false' 

regressions when selecting a model structure from experimental data. While some regression factors may be more 

useful, no regression factor can be definitively classified as true or false. Additionally, the text notes that when working 

with limited and possibly imprecise data, the structures of different models may become indistinguishable. Using a 

probabilistic approach, it is possible to account for the uncertainty inherent in the data and make more informed 

decisions about which model structures to choose from. Likely to be accurate. 

2.1.3. Validity Test of the NARMAX Model: 

Model validation checks the residual sequence for bias that could affect parameter estimation. By equation (9), 

there are parameters with a vector of  of dimension , we get: 

…(15) 
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where  is a residual model at . 

To get estimates of  and calculate the correlation coefficient, we reduce the loss function through a series of 

steps. To analyse the even and odd functions, we sum the products of Volterra grains and Gaussian noise. Then, we 

sum the products of Volterra kernels and Gaussian noise, suppressing the odd terms to zero. You can evaluate the 

second-to-fourth correlations of the extended residues as the Volterra series. This will help you detect all the possible 

deleted terms in the model. In this evaluation, we assume that noise is balanced, odd terms are eliminated, even terms 

are kept, and the third moment is zero. From this, we get the final equation: 

…(16) 

 

 

where  are Volterra kernels [5]. 

2.2. Volatility Model (Beta-t-EGARCH): 

In 1982, Engle suggested ARCH models. However, these models were not enough to model all time series. 

Specifically, he assumed that positive and negative sudden effects have the same impact [20]. Therefore, a 

generalisation of these models was developed by Bollerslev in 1986 [21]. The aim of these models is to control the 

models. GARCH is a mathematical model that shows the unevenness of conditional variance. It includes extreme 

values and is represented by the following equations: 
 

 

 

 
 

 

…(17) 

 

 

where , and  are parameters of constant, ARCH, and GARCH, respectively, while  are the numbers 

of late conditional differences for the variance parameters and the number of conditional error variances, respectively. 

The Exponential GARCH (EGARCH) model was developed by Nelson in 1991. This model differs from the 

structure of the GARCH model because of past differences in variance and is expressed by the equation: 

…(18) 

 

 

where  [8]. 

The Beta-t-EGARCH model is a type of dynamic conditional point model that is used to estimate the conditional 

variance of a time series. This model is an extension of the EGARCH model and uses the conditional score of the beta-t 

distribution to estimate conditional variance, which makes it more robust against outliers. The model is constructed 

from two components, the conditional mean and the conditional variance, and is powered by the conditional scale 

parameter . The form Beta-t-EGARCH ( ) can be expressed as: 

…(19) 
 

 
Conditional volatility is expressed with leverage effects: 

…(20) 

 

 

where , , and  are ARCH and GARCH coefficient effects, 

respectively, and the standard residual value, , is assumed to follow a t-Student's distribution with mean 0, variance 

1, and degree of freedom  [22]. 

2.2.1. Conditional Stability and Forecast of Beta-t-EGARCH: 

Beta-t-EGARCH is an extension of EGARCH that models conditional variance using the beta-t distribution. The 

stability condition for the covariance of the Beta-t-EGARCH ( ) is given by [22,11] . 
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In order to give a predictive model, we take equation (20) of order (1,1), so we get: 

…(21) 
 

 
Forecasting is one step ahead: 

 
 

 
Forecasting is the second step ahead: 

 
 

 

Since . We get: 
 

 

 

Forecasting is -step ahead: 
 

 

 

Thus, we get a predictive composite of k future steps in the form: 

…(22) 

 

 

2.2.2.QARMA-Beta-t-EGARCH: 

As it is known, the Beta-t-EGARCH models were designed to predict the values of conditional variances; that is, 

they are not sufficient to predict the values of the series data, so they were presented in addition to a combination with 

other models of the mean. This study uses the QARMA-Beta-t-EGARCH model, which is particularly effective in 

controlling. Means that the model is able to adjust its parameters based on new information, allowing it to accurately 

predict future returns even in the presence of outliers. This is important because outliers can significantly impact the 

general distribution of returns and make it difficult to accurately predict future returns. To do this, the model uses the 

prior values of the conditional degree of the LL function (which is a measure of the probability of observing a given 

return given the prior values of the return and other relevant variables) to change the location and magnitude of the 

returns. So, the equation of the model is in the form: 

 
 

 

…(23) 

 

 

…(24) 
 

 

…(25) 

 

 

…(26) 
 

 

3. Radial Basis Function Neural Networks (RBFNN): 
RBFNN is a 3-layer neural network using radial basis functions in the hidden layer. It has a non-linear mapping 

from the input to the hidden layer and a linear mapping from the hidden to the output layer. Training involves 

unsupervised learning of RBF centres/widths and supervised learning of output weights [14]. 
To calculate the distance between a data point and the centre of the grid, there are several types of functions: 

…(27) Gaussian 
 

 

…(28) 

 

 

 

…(29) 
 

 

 

…(30) Linear 
 

 

…(31) thin-plate spline 
 

 

…(32) Logistic  
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where  is represents the distance between the centre  and the data point, either in equations 27, 28, 29, or 32, 

it is used to control the smoothness of the interpolation function,  in equation (32) it is a function Table bias, and  in 

equation (29)  Often set to 0.5, the RBF becomes Hardy's multi-quadric function. Most of the time, when training the 

neural network equation (27) is taken [23]. 

3.1. Interpolation Networks: 

The interpolation problem refers to the task of estimating values between known data points. A three-layer feed-

forward neural network can elegantly solve this problem. The three layers in the network have distinct roles in the 

learning process: the input layer consists of the nodes that receive the sensor information, the second layer is the only 

hidden layer and applies a non-linear transformation from the input space to the hidden space, the non-linear 

transformation is followed by a linear transformation from the hidden layer to the output layer. A neural network can 
estimate values between known data points in a high-dimensional space using a combination of non-linear and linear 

transformations. The mathematical formulation of the interpolation problem can be summarised below. 

Let ,  is data points,  

 
 

 

…(33) 
 

 

RBF has a select  technique, so it becomes: 

…(34) 

 

 

where  is the smooth transition function defined as RBF while  is the Euclidean Norm function in , 

 represents the basis of the algebraic polynomials in linear space  for max. 

order  as  given. Let  is continuous, differentiable, and strictly monotonic at , then we get: 

…(35) 

 

 

Now that we can implement the approximation problem with a three-layer neural network. It is possible to obtain a 

simplified form if we specify  for RBF with width :  

…(36) 
[25] 

 

 

3.2. Regularisation Networks: 

It is a method used to solve unsolved problems in neural networks. The problem becomes incorrect when the 

data is corrupted by noise, as there are infinite solutions. To choose a particular solution, prior knowledge of the 

function  is needed, such as prior smoothing information [as a measure of the 'oscillating' behaviour of the 

function, as the smooth function shows oscillations are few and have less energy in the high-frequency range].  

Regularisation theory can be introduced as a new approach to solving these unsolved problems, which involves 

fixing the solution using a non-negative auxiliary function that includes a priori information about the solution. 

The solution to the regularisation problem is denoted by , which is required to approximate the data well and 

to be smooth at the same time. Let  be a smoothness function where  must be minimised in the following 

equation: 

…(37) 

 

 

, is called the regularisation parameter. In equation (37), the first part is to find the distance to the solution , 

while the second part enforces softness and measures the cost associated with its deviation from smoothness. Where the 

regularisation coefficient  controls it. The solution to the regulation problem is given by the following equation: 

…(38) 
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…(39) 

 

 

where  are expansion centres, weights  represent expansion coefficients, and  is a 

linear overlay of the  Green functions. Equation (39) is a simplified form of equation (38), which can be interpreted 

as a network with only one hidden layer of units, referred to as the organising network. 

Since Green's functions are symmetric with  only depend on , if the smoothness 

function  is not constant both in translational and rotational terms, then equation (39) becomes of the form:  

…(40) 

 

 

Accordingly, we obtain the following indicators: 

• Equation (40) is a special form of equation (39) that represents strict interpolation, where all training data 

points are used to generate the interpolation function. 

• The regularisation coefficient, , can be interpreted as an indication of the sufficiency of the available data to 

determine the solution . 

• If , the solution  is sufficiently determined from the available examples, while  

corresponds to pure interpolation. 

• If , then the examples are unreliable and, in practice,  falls between these two limits to enable both 

sample data and prior information to contribute to the solution . 

• The regularisation problem is used to mitigate the overtraining problem in neural networks, whereby the 

network learns all the details of input-output pairs but not their general shape by adding noise to the input data 

and choosing the parameter of intelligent regularisation. [24] 

3.3. Data Processing in RBFNN: 

In RBFNN, data processing is different from standard supervised or unsupervised learning. In a neural network, 

hidden units are kernel functions that create a 'base' of input patterns. The hidden unit space maps these patterns. RBFs 

are the functions that perform the nucleus functions in an RBFNN. They approximate the input-output relationship. In 

math, the receptive field is like the nucleus [24]. It describes local interaction between neurons [26-27]. 

The steps involved in data flow through an RBFNN during classification, which is a typical RBFNN learning 

algorithm [24] 

1. Initialisation, where random values are chosen for the initial weights of the RBFNN. The size of the weights 

should be small, and the  centres and -form matrices of  are chosen given the RBF. 

2. Sampling, where the pattern  is randomly drawn from the input data, which represents the input to the neural 

network. 

3. Involves the forward computation of the hidden layer activations, where the values of the hidden layer nodes 

are computed using the Mahalanobis distance, which is a metric standard. 

4. Front computation of output layer activations, where the values of the output nodes are calculated based on the 

weights and values of the hidden layer nodes. 

5.  Refresh, where the weights of all neurons in the output layer are adjusted based on the steepest regression 

rule. 

6. Continuation, where the algorithm continues with (2) until no significant changes in the error function are 

observed. 

The algorithm relies on prior knowledge of the centres of the radial basis and their shape matrices [24]. 

3.4. Training Techniques for RBFNN: 

RBFNN has a mixed learning process that involves adjusting both the linear weights of the output neurons and the 

non-linear activation functions of the hidden neurons. Adjusting the weight of output neurons is a linear process, while 

adjusting the non-linear parameters of hidden neurons is non-linear. Since the hidden layers and output layers of the 

RBFNN perform different tasks, we need to separate the optimisation of these layers and use different learning 
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techniques for each. There are degrees of freedom in choosing the kernel functions of the RBFNN, which can be fixed 

or modified during the training phase. There are several techniques for designing an RBFNN, depending on how the 

functions of the radial basis centres are defined. The best-known strategies chosen for practical applications are the 

following: 

• Method for selecting fixed centres for RBFNN: in this method, the kernel functions are fixed and the core 

locations are randomly selected from the training set. Each RBF is defined as a function of the distance 

between the input vector and the randomly selected centre. 

• This process is based on a self-organising learning strategy where the locations of the nucleus function centres 

are adapted based on a clustering algorithm that divides the given dataset into homogeneous subsets. A -

means clustering algorithm is used to map the centres of the RBF, and the optimal number of RBF is 

determined empirically. The -means algorithm continues through initialisation, sampling, similarity 

matching, update, and persistence. 

• All free parameters of kernel functions, including centres, are adapted based on a supervised learning strategy. 

A kernel function is a mathematical function used to measure the similarity between two inputs in a neural 

network. Centres are the points in the input space around which the kernel function is evaluated. A supervised 

learning strategy means that the network is trained using labelled data, where the correct output is known for 

each input. This method results in an RBFNN in its most general form. An RBFNN is a type of neural network 

that uses RBF as an activation function. The error correction learning mentioned in the text refers to a kind of 

learning algorithm where the network weights are modified to reduce the difference between the expected 

output and the actual output [24]. 

After completing all stages of building, training, and testing the RBFNN, the following is Figure 2, showing the 

structure of the RBFNN. 

 

Figure.2. Structure of RBFNN [26] 

4. Data analysis:  
4.1.The Analysis: 

First, we draw the time series, which is considered an initial step in all-time series analyses, which gives the first 

impression of the nature of the time series, as Figure 3 represents the weekly average of closing the trading market for 

the index of Aramco 2222. Obtained from www.investing.com. 

http://www.investing.com/
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Figure.3. plot The time series  

The time series plot is followed by the return series plot. 

 

Figure.4. The Return series plot 

4.2. NARMAX Analysis: 

The modelling or analysis process in NARMAX models is very simple, as the mathematical modelling process 

includes a certain number of stages and cycles. From a given set of inputs and output measurement data, the importance 

of formulating the structure is emphasised before the model parameters are defined. modelling process 

Where the initial network was configured (Determination of the class of models) by placing 50 hidden layers to 

conduct the first experimental design of the network and a training rate of 0.8, as well as setting the number of sessions 

during the training period to 1000 periods, a combined prediction (CP) expressed by the equation was used 
 

 

 

where  is the weight of the combined prediction,  is the ARIMA estimator, and  is the non-linear 

prediction. 
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Figure.5. Adaptive neural network diagram by Matlab 

 

The next step is the parameter estimation stage of the model, where the ranks from  to  and 

 were used in Equation 1 to obtain estimates of the model's parameters as well as to validate the best model. 

The MSE component criterion was also chosen to determine the best order. 

Table.1.  and  values and MSE component 

 and  values MSE component  and  values MSE component 

 

0.5891 
 

0.6041 

 

0.6022 
 

0.5728 

 

0.5941 
 

0.5646 

 

0.5960 
 

0.5544 

 

0.6091 
 

0.5657 

 

0.5944 
 

0.5831 

 

0.5530 
 

0.5654 

 

0.5563 
 

0.5552 

 

0.5595 
 

0.5524 

 

0.5555 
 

0.5448 

 

Therefore, the model  is the best model because it contains the lowest value of the chosen 

criterion, and that the values of the estimated parameters is: 

 

Table.2. The values of the estimated parameters 

 Value Standard Error T-Statistic P-Value 

Constant 0.013644 0.0373 0.3658 0.71451 

 

-0.66979 0.85374 -0.78453 0.43273 

 

0.010036 0.50079 0.020041 0.98401 

 

0.83327 0.38662 2.1553 0.031142 

 

0.43424 0.56313 0.77112 0.44063 

 

0.82222 0.85483 0.96184 0.33613 

 

-0.014724 0.66602 -0.022108 0.98236 

 

-1 0.46178 -2.1655 0.030346 

 

-0.50056 0.66126 -0.75698 0.44906 
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Then we say in the last step the application of the final model: below is Neural Network training. 

 

Figure.6. Neural Network training by Matlab 

The following figure represents a set of figures for the most important results of neural network analysis. 

  

(a) Best Validation Performance is 0.90795 at the 

epoch 

(b) Gradient, Mu, and Validation checks  

 

 

(c) Output Training and Validation (d) Real Data to NARMAX 

Figure.7. Results of neural network analysis 

4.3. Beta-t-EGARCH Analysis: 

After drawing the time series in Figure 1 and converting the time series into a returns series, we now draw the ACF 

and PACF. 

 

0.051688 0.11116 0.46499 0.64194 

 

0.45197 0.057709 7.8318 4.8095e-15 
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Figure.8. Plot of square error series 

To discover whether or not there is an effect of heterogeneity of variance by finding the series of squared errors of the 

series of returns. 

 

Figure.9. Plot of square error series 

In order to detect the effect of heterogeneity, we will use the Ljung-Box test. 

Now comes the stage of adaptation and estimation of the parameters of the model using best-order criteria, and 

AIC and BIC criteria were used. 

Table.3. AIC and BIC criteria 

Beta-t-EGRACH(Q,P) AIC BIC 

Beta-t-EGRACH(1,1) -848.9112 -833.0023 

Beta-t-EGRACH(1,2) -855.3407 -833.0683 

Beta-t-EGRACH(1,3) -855.3715 -826.7355 

Beta-t-EGRACH(2,1) -859.9166 -840.8259 

Beta-t-EGRACH(2,2) -857.7030 -832.2487 

Beta-t-EGRACH(2,3) -854.2385 -822.4206 

Beta-t-EGRACH(3,1) -859.1822 -836.9097 

Beta-t-EGRACH(3,2) -855.7059 -827.0698 

Beta-t-EGRACH(3,3) -878.5235 -843.5238 

 

Therefore, the best model according to AIC and BIC standards is Beta-t-EGRACH(3,3), and the estimated 

parameters of this model are: 
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The stability condition for variance is achieved by the following equation: 

 

 

We used GARCH models and QARMA models together to predict the original time series. GARCH models cannot 

predict the original series because they are variance models. 

Table.4. AIC and BIC criteria for QARMA(p,q)-Beta-t-EGRACH(3,3) 

QARMA(p,q)-Beta-t-EGRACH(3,3) AIC BIC 

QARMA(1,0)-Beta-t-EGRACH(3,3) -867.054 -824.7640 

QARMA(1,1)-Beta-t-EGRACH(3,3) -873.0963 -827.1219 

QARMA(1,2)-Beta-t-EGRACH(3,3) -866.0765 -821.6801 

QARMA(1,3)-Beta-t-EGRACH(3,3) 868.7536 -825.481 

QARMA(1,4)-Beta-t-EGRACH(3,3) 869.8645 -824.6382 

QARMA(2,0)-Beta-t-EGRACH(3,3) -872.546 -825.7903 

QARMA(2,1)-Beta-t-EGRACH(3,3) -874.5028 -826.8251 

QARMA(2,2)-Beta-t-EGRACH(3,3) -875.0684 -827.3417 

QARMA(2,3)-Beta-t-EGRACH(3,3) -871.7562 -825.8914 

QARMA(2,4)-Beta-t-EGRACH(3,3) -868.421 -823.7047 

 

So, the model QARMA(2,2)-Beta-t-EGRACH(3,3) is the best model according to AIC and BIC criteria. 

 

 

Figure.10. The inferred and forecasting Returns and Real data, prediction of 12 periods  
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4.4. RBFNN Analysis: 

The data series is divided into two groups. The first group is called a test set with 80% of the observations of the 

studied series, and a training set with 20%, and 10 hidden layers with a stopping time of 1000. Where Table 5 

represents the values of the training set for the ENN network, while Table 6 represents the values Network training 

algorithms. 

To find the output of an RBF neural network in an ANN, follow these steps. To prepare your training data, get the 

input patterns and target outputs ready. If needed, normalise or standardise the input data for consistent scaling. Use the 

RAND function to generate distributed numbers from 0 to 1. The NEWRB function creates a radial basis network that 

approximates a defined function. It takes a training set, targets, a sum-squared error goal of 0.2, and a spread constant 

of 1. The spread of the radial basis neuron B is set to a very large number. We will calculate the distance between a 

data point and the centre of the grid using equation (27). The results are as follows: 

Table.5. Training process of RBFNN 

Target value Stopped value Initial value  Unit  

1000 116 0 Epoch 

- 00:00:27 - Elapsed Time 

0 5.11 24.9 Performance 

1e-05 11.8 257 Gradient 

6 6 0 Validation Checks 

 

 

Table.6. Dimensions, connections, sub objects, functions, weight and bias values, and methods of RBFNN 

 

Dimensions connections sub objects 

Num Inputs: 1 Bias Connect: [1; 1] input: Equivalent to inputs{1} 

Num Layers: 2 inputs: {1x1 cell array of 1 input} 

Num Outputs: 1 Input Connect: [1; 0] layers: {2x1 cell array of 2 layers} 

Num Input Delays: 0 biases: {2x1 cell array of 2 biases} 

Num Layer Delays: 0 Layer Connect: [0 0; 1 0] Input Weights: {2x1 cell array of 1 

weight} 

Num Feedback Delays: 0 Layer Weights: {2x2 cell array of 1 

weight} 

Num Weight Elements: 538 Output Connect: [0 1]  

Sample Time: 1 

functions weight and bias values methods 

derivFcn: 'default deriv' IW: {2x1 cell} containing 

1 input weight matrix 

adapt: Learn while in continuous use 

initFcn: 'initlay' configure: Configure inputs & outputs 

Perform Fcn: 'mse' LW: {2x2 cell} 

containing 1 layer weight 

matrix 

gensim: Generate Simulink model 

Perform Param: 

.regularization, 

.normalization 

init: Initialize weights & biases 

Plot Fcns: {} b: {2x1 cell} containing 2 

bias vectors 

perform: Calculate performance 

Plot Params: {1x0 cell array 

of 0 params} 

sim: Evaluate network outputs given 

inputs 

 train: Train network with examples 

view: View diagram 

Uncon figure: Uncon figure inputs & 

outputs 

 

    

  As for the following, Figure 11 represents the values of the training and validation set for the best validity. Figure 12 

represents the training case. The error values in the histogram with 20 bins can be observed in Figure 13. The response 

of the output element-1 for the time series-1 is shown in Figure 14. Finally, Figure 15 represents the correlations 

between the input and output errors of the neural network. 
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Figure.11. The values of the training and validation set for the best validity  

 
Figure.12. The training case 

 

 
Figure.13. The error values in the histogram with 20 bins can be observed 
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Figure.14. The response of the output element-1 for the time series-1 

 
Figure.15. The correlations between the input and output errors of the neural network 

And by using comparison criteria MSEANN, we get the value 7.4266e-04. Finally we plot the real data to FRBNN. 

 

Figure.16. Real Data to RBFNN 
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5. Comparison: 

The best comparison that can be made between the previous three models is to maintain an evaluation set of data 

represented by the last 10 observations of the time series to evaluate the performance of the used models. The following 

table shows the actual and predicted values for each model: 

Real Data Prediction by NARMAX Prediction by Beta-t-EGARCH Prediction by RBFNN 

33.55 31.5853 33.0033 33.553 

32.1 31.7299 32.1833 32.1117 

32 33.4164 33.8233 32.0177 

31.5 30.7584 31.7133 31.5411 

32.4 31.9973 32.6733 32.5411 

32.65 31.3494 32.9233 32.6522 

32.2 31.378 32.4733 32.2084 

32.35 32.6186 32.6233 32.3825 

32.2 31.391 32.4733 32.2 

32.3 32.3 32.5733 32.3324 

MSE 0.5448 0.44064 7.4266e-04 

6. Conclusion: 
This paper presents a comparison of three different nonlinear time series modelling approaches NARMAX 

(Nonlinear Autoregressive Moving Average with Exogenous Inputs), Beta t EGARCH (Beta-t-Exponential Generalized 

Autoregressive Conditional Heteroscedasticity), and Radial Basis Function Neural Networks (RBFNN) applied to 

weekly stock market index data. 

The key points are: 

• NARMAX is a flexible nonlinear model that can represent a wide range of dynamical systems. Parameter 

estimation uses a least squares approach. Model structure selection uses error reduction ratio criteria. 

• Beta-t-EGARCH is an extension of EGARCH that models conditional variance using the beta-t distribution. 

It is combined with ARMA models to forecast the time series. Parameters are estimated to minimize 

information criteria like AIC and BIC. 

• RBFNN is a 3 layer neural network using radial basis functions in the hidden layer. It has a nonlinear 

mapping from input to hidden layer and a linear mapping from hidden to output layer. Training involves 

unsupervised learning of RBF centres/widths and supervised learning of output weights. 

• The models were applied to weekly closing price data for a stock market index over 187 weeks. The data 

was divided into training and test sets. 

• Model orders were selected by minimizing error criteria like MSE. RBFNN gave the lowest test MSE of 

7.4266e-04, outperforming NARMAX (MSE = 0.5448) and Beta t EGARCH (MSE=0.44064). 

• The study concludes RBFNN provides the most accurate forecasts on this data. But all models gave 

reasonably good predictions. Overall the paper provides a useful practical comparison of nonlinear time 

series modelling techniques. 
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