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1. INTRODUCTION 

       To accurately capture the behaviour of data in diverse situations, several approaches have been proposed to achieve 

more adaptable distributions. One way to achieve this is by introducing one or two parameters into the parent 

distributions, which introduces new concepts for flexible modelling in distribution theory. The number of shape 

parameters that characterise the cumulative distribution function (CDF) plays a vital role in ensuring the flexibility of 

distributions. Various methods have been developed to incorporate one or more parameters into the CDF of a 

distribution, thereby enhancing the flexibility and effectiveness of the resulting distribution for data modelling. 

 

        In addition, researchers have introduced established families of continuous probability distributions to enhance the 

flexibility of distributions for real data analysis. These families aim to provide more versatile distributions that can 

better represent and analyse real-world data. Some well-known families of distributions include the Generalized beta-G 

family by Alexander et al. [1], Gamma-G Type-3 by Torabi and Montazeri [2], Weibull-X family by Alzaatreh et al. 

[3], odd generalized exponential-G family by Tahir et al. [4], Kumaraswamy Weibull-generated-G family by Hassan 

and Elgarhy [5], generalized transmuted-G by Nofal et al. [6], a new Weibull-X family by Zubair Ahmad et al. [7] and 

Exponentiated T-X family by Alzaghal et al. [8]. 

 

       The new family introduced in this paper is derived based on the Generalized Rayleigh (GR) distribution, which 

was initially introduced by Surles and Padgett [9] and later extended by Bhat and Ahmad [10]. The CDF of the GR 

distribution is a key component in the derivation of this new family. 

The CDF of the GR distribution is expressed as:  

 (1) 

  

And the expression for the probability density function (PDF) corresponding to equation (1) can be written as follows:    

 
 

       Eugene et al. created the so-called family of beta-generated distributions by using the beta distribution as a 

generator. A beta-G random variable X's CDF is defined as follows: [11] 
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Where r(t) is the beta random variable's PDF. and  is the CDF of any random variable and X's range is [0,1]. 

      Further, Torabi and Montazeri introduced Gamma-G Type-3, a new flexible family of distributions. The CDF of a 

Gamma-G Type-3 random variable X is defined as: [12] 

 
 

Where the range of X is  

       We introduced a new method of generating Families in this study in the following way:  

Multiply the CDF of a random variable X into beta –G [11] by the CDF of a random variable X into Gamma-G Type-

3[12]. The result, denoted as   is the new CDF of a random variable X. 

 
 

Where the range of x is  and   satisfies the following conditions: 

i.   

ii. is differentiable and monotonically non-decreasing.  

iii.  

With the method Alzaatreh et al. [3], we define the CDF of the new Odd Generalized Rayleigh (OGR) Family: 

 
 

The CDF of OGR-G is:  

 

(2) 

  

The PDF associated with equation (2) can be expressed as follows: 

 

(3) 

  

Where  

 

2. The odd Generalized Rayleigh Inverse Weibull distribution (OGRIW) 
              Consider the Inverse Weibull (IW) distribution with parameters  (scale parameter) and  (shape parameter). 

Then, the CDF and PDF of IW are given as follows: 

 

 (4) 

  

And  

 (5) 

 

we introduce a new distribution called the odd Generalized Rayleigh Inverse Weibull (OGRIW) distribution by 

substituting equation (4) into equation (2). This results in:  
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(6) 

 

And the corresponding PDF is as given by equation (3) 

 

(7) 

   

Where . 

 

For OGRIW distribution's hazard, as mentioned below, we derive equation (8): 

 
 

 

(8) 

  

Figures a and b display the PDF and h(x) plots of the OGRIW distribution for the specified values of the  

and  functions. As illustrated in Figure 1, the PDF exhibits right skewness. 

 

a 

 
 

 

b 

 

FIGURE 1.- (a) Plot of the PDF and (b) plot of the h(x) of the OGRIW distribution.   
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1. Mathematical Properties 
 

       This section explores the mathematical properties of the OGRIW distribution, including the useful Expansion of 

PDF and CDF, Moment, Moment Generating Function, Incomplete moment, Quantile function, Order Statistics and 

Rényi Entropy. 

 

3.1 Useful Expansion 

       In this subsection, we simplify equation (3) by using the Exponential expansion  and binomial 

series expansion .[13-15] 

By binomial series expansion, we derive: 

 
And by using the Exponential expansion, we derive:  

 
Then  

 
Again, upon using binomial series expansion, we derive: 

 
Then  

 

We can expand to derive:  

 (9) 

  

Where  

 
By applying equation (4) and equation (5) to equation (9), we get equation (10): 

 

 (10) 

  

Now, we simplify equation (2) by using the Exponential expansion and binomial series expansion: 

 
 

And  

 
Then  

 
And  

 
Then   
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(11) 

  

 

By applying equation (4) to equation (11), we get equation (12) 

 

 

(12) 

  

       Equations (11) and (12) play an important role in calculating the statistical properties of the distribution, including 

moment and incomplete moments. 

 

3.2 Moment, Skewness and Kurtosis  

       The nth moment of X can be obtained from equation (10):[16] 

 

 

 
Let  

 
 

Then  

 

(13) 

 

By utilising equation (13), we can determine various statistical moments of the distribution, such as the first moment 

( ), representing the mean, the second moment ( ), the third moment ( ) and the fourth moment ( ). 

 

 

(14) 

  

 

(15) 

  

 

(16) 

  

 

(17) 

 

By utilising equations (14), (15), (16) and (17), we can calculate the variance , skewness 

  and kurtosis  . 
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Table 1. – Numerical value of ,  , ,  , , SK and KU of the OGRIW distribution. 

         

SK KU 

Values of parameter values of properties  

 

 

 

 

1 

 

 

3 

 0.8 5 26 148 82 1 1.116 0.121 

1.5 0.9 4.2 18 83 47 0.36 1.086 0.145 

 

1.6 

0.8 5.4 31 189 113 1.84 1.095 0.117 

0.9 4.4 21 103 63 1.64 1.070 0.142 

 

 

3.5 

 

1.5 

0.8 5.1 28 160 67 1.99 1.079 0.085 

0.9 4.2 19 89 39 1.36 1.074 0.108 

 

1.6 

0.8 5.5 33 204 92 2.75 1.076 0.084 

0.9 4.6 22 110 52 0.84 1.066 0.107 

 

 

 

 

2 

 

 

3 

 

1.5 

0.8 3.8 15 67 131 0.56 1.153 0.582 

0.9 3.3 11 41 73 0.11 1.123 0.603 

 

1.6 

0.8 4.1 18 85 181 1.19 1.113 0.558 

0.9 3.5 13 51 97 0.75 1.088 0.573 

 

3.5 

 

1.5 

0.8 3.9 16 72 106 0.79 1.125 0.414 

0.9 3.4 12 44 60 0.44 1.058 0.416 

 

1.6 

0.8 4.3 19 92 146 0.51 1.110 0.404 

0.9 3.6 13 54 80 0.04 1.102 0.473 

        

 Table (1) reveals some interesting observations regarding the behaviour of moments, variance, skewness and kurtosis 

in the OGRIW distribution under different parameter settings. 

Firstly, when the values of c, b and ρ are held constant, and the value of θ is increased, we observe that the moments, 

variance and skewness decrease. However, the kurtosis increases for the OGRIW distribution. 

Secondly, when the values of c, b and θ are kept constant, and the value of ρ is increased, we find that the moments, 

variance and skewness increase. Conversely, the kurtosis decreases for the OGRIW distribution. 

Thirdly, when the values of c, θ and ρ are fixed, and the value of b is increased, we notice that the moments, variance 

and skewness increase. However, the kurtosis decreases for the OGRIW distribution. 

Lastly, when the values of b, ρ and θ are maintained constant, and the value of c is increased, we observe that the 

moments, variance and skewness decrease. In contrast, the kurtosis increases for the OGRIW distribution. 

 

3.3 Moment Generating Function  

  The MGF is given as follows: 

 
Upon substituting equation (10) into the MGF equation, we get equation (18) 

 

(18) 

 

3.4 Incomplete Moments 

         The r-th incomplete moment R of X, is given by equation [17]  

 
Upon substituting equation (10) into the above equation, we get: 

 

 
Let  then 

 
By utilising the definition of the complete Gamma function, the  will be as follows: 
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(19) 

 

  

3.5 Quantile function 

       The inverse of equation (6) allows us to obtain the quantile function: 

 

 
Upon applying algebraic operations, we arrive at the following formula: 

 

(20) 

  

3.6 Order Statistics 

        Let  be the order statistics of a random sample  of size n from OGRIW 

distribution. The probability density function for order statistics is given as follows:[18] 

 
 

Substituting equations (6) and (7) into the  equation, we get equation (21) as follows: 

 

(21

) 

 The PDF of the minimum order statistic, when p = 1, and the maximum order statistic, when p = n, of the OGRIW 

distribution, are respectively expressed as: 

 

(22

) 

 

 

(23

) 
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3.7 Rényi Entropy 

 

       The Rényi entropy of a random variable is a measure of an uncertainty's variation. The Rényi entropy is defined as 

follows: 

 
By using Equation (7), we get:  

 

 

(24

) 

 

4. Maximum Likelihood Estimation  
       Let  be a random sample of size n from the OGRIW class having parameters . Consider 

. The log-likelihood (LL) function is given as: 

 

 

(25

) 

  

We take the partial derivative of the log-likelihood function for the parameters  to obtain the probability 

estimate for each parameter, as follows: 

 

(26) 

  

 

(27) 
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(28

) 

  

 

(29

) 

We obtain the estimate of the Maximum Likelihood Estimation by equating the earlier equations to 

zero: . The usage of R was necessary because these equations cannot be resolved 

analytically. 
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5. Applications to COVID-19 data  
       In this section, we compare the OGRIW distribution with other competing models using real-world COVID-19 

mortality rates data from Mexico and Canada. The results are presented in Table 2. 

 

Table 2. - Comparative distributions. 
 

Distributions 

 

CDF 

 

❖  Truncated Exponentiated Exponential Inverse 

Weibull distribution (TEEIW) (New).  

 

❖   Beta Inverse Weibull distribution (BeIW) [19]. 

 

 

❖    Kumaraswamy Inverse Weibull distribution 

(KuIW) [20]. 

 

❖ Exponential Generalized Inverse Weibull 

distribution (EGIW) [21]. 

 

 

❖ Weibull Inverse Weibull distribution (WeIW) 

(New).   

 

 

❖   Rayleigh Inverse Weibull distribution (RIW) 

(New).   

 

❖ Gompertz Inverse Weibull distribution 

(GoIW) (New). 

 

 

❖ Burr type X distribution (BX) [22]. 

 

 

❖ Rayleigh distribution (R) [10]. 

 

❖ Inverse Weibull distribution (IW) [23]. 

 
 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

The first dataset (I): Represents the COVID-19 mortality rate data for Mexico over 108 days, specifically recorded 

from March 4th to July 20, 2020. The data provides information on the rough mortality rate, indicating the number of 

deaths related to COVID-19 during that period [24].   

(8.826, 6.105 ,10.383, 7.267 ,13.220, 6.015 ,10.855, 6.122 ,10.685, 10.035, 5.242 ,7.630 ,14.604 ,7.903 ,6.327 ,9.391 

,14.962 ,4.730 ,3.215 ,16.498, 11.665 ,9.284, 12.878, 6.656, 3.440 ,5.854, 8.813 ,10.043, 7.260, 5.985, 4.424 ,4.344 

,5.143 ,9.935 ,7.840 ,9.550 ,6.968 ,6.370 ,3.537 ,3.286 ,10.158, 8.108 ,6.697 ,7.151 ,6.560 ,2.988 ,3.336 ,6.814 ,8.325 

,7.854 ,8.551 ,3.228, 3.499 ,3.751 ,7.486 ,6.625 ,6.140 ,4.909 ,4.661 ,1.867 ,2.838 ,5.392, 12.042, 8.696 ,6.412 ,3.395 

,1.815 ,3.327 ,5.406 ,6.182 ,4.949 ,4.089 ,3.359 ,2.070, 3.298 ,5.317 ,5.442 ,4.557 ,4.292 ,2.500 ,6.535 ,4.648 ,4.697 

,5.459 ,4.120, 3.922 ,3.219, 1.402 ,2.438, 3.257 ,3.632, 3.233 ,3.027, 2.352 ,1.205 ,2.077,  3.778, 3.218, 2.926, 2.601, 

2.065, 1.041, 1.800, 3.029, 2.058, 2.326, 2.506, 1.923). 

 

       Based on the values presented in Table 4, it is evident that the OGRIW distribution exhibits the minimum values 

for various information criteria, such as Akaike Information Criteria (AIC), Consistent Akaike Information Criteria 

(CAIC), Bayesian Information Criteria (BIC), and Hanan and Quinn Information Criteria (HQIC). Additionally, the 

OGRIW distribution demonstrates the highest P-value for the Kolmogorov-Smirnov (KS) test, as well as the lowest 

values for the Cramér-von Mises (W) and Anderson-Darling (A) tests, in comparison to the competing distributions. 

       These findings lead us to conclude that the OGRIW distribution provides the best fit for the first dataset. 

Furthermore, Figure 3 supports this conclusion, illustrating that our distribution outperforms the comparative 

distributions, further emphasising its superiority in accurately modelling the data. 
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       In summary, based on the superior performance in terms of information criteria and goodness-of-fit tests, we can 

confidently conclude that the OGRIW distribution is the most suitable model for the first dataset. 

 

Table 3. - Statistical description for Data (I). 

 

Var 

 

n 

 

mean 

 

Sd 

 

median 

 

Min 

 

Max 

 

SK 

 

KU 

x 108 5.76 3.25 5.19 1.04 16.5 0.97 0.61 

 

Table 4. - Goodness-of-fit statistics and KS p-value for Data (I). 

 

Distribution 

 

 

MLEs 

 

-2L 

 

AIC 

 

CAIC 

 

BIC 

 

HQIC 

 

W 

 

A 

 

K-S 

 

p-

value 

 

OGRIW 

: 0.4151 

: 1.9208 

: 0.7258 

: 0.4512 

 

265.99 

 

539.99 

 

540.38 

 

550.72 

 

544.34 

 

0.0562 

 

0.3117 

 

0.0704 

 

0.658 

 

TEEIW 

: 2.7752 

: 0.4394 

: 17.515 

: 1.2447 

 

273.62 

 

555.46 

 

555.85 

 

566.19 

 

559.81 

 

0.1871 

 

1.1763 

 

0.0777 

 

0.530 

 

BeIW 

: 2.9331 

: 4.0901 

: 3.3877 

: 0.8624 

 

269.95 

 

547.94 

 

548.33 

 

 

558.67 

 

552.29 

 

0.1314 

 

0.8078 

 

0.0859 

 

0.401 

 

KuIW 

: 2.6479 

: 5.1677 

: 3.0775 

: 0.8712 

 

268.37 

 

544.75 

 

545.14 

 

555.48 

 

549.10 

 

0.1011 

 

0.6023 

 

0.0767 

 

0.547 

 

EGIW 

: 3.3066 

: 2.9851 

: 3.5637 

: 0.8433 

 

271.25 

 

550.51 

 

550.90 

 

561.24 

 

554.86 

 

0.1558 

 

0.9665 

 

0.0846 

 

0.421 

RIW : 2.1374 

: 2.8817 

: 0.8442 

 

277.32 

 

560.65 

 

560.88 

 

568.70 

 

563.91 

 

0.2647 

 

1.6858 

 

0.0869 

 

0.387 

BX : 0.1514 

: 1.0022 

269.23 542.46 542.57 547.82 544.64 0.1184 0.7624 0.0938 0.297 

R : 0.0229 269.22 540.46 540.49 543.14 541.54 0.1185 0.7627 0.0933 0.303 

IW : 8.9181 

: 1.6913 

277.33 558.65 558.77 564.02 560.83 0.2653 1.6899 0.0864 0.394 
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a 

 
 

b 

 

c 

 

d 

 
 

FIGURE 2.- (a) and (c) Estimated PDF and (b) and (d) CDF for data I. 
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The second dataset (II): Represents the COVID-19 mortality rate data for Canada over 36 days, specifically from 

April 10 to May 15, 2020. The data provides information on the rough mortality rate, indicating the number of deaths 

related to COVID-19 during that period. The data are as follows:[25] 

 (3.1091, 3.3825, 3.1444, 3.2135, 2.4946, 3.5146, 4.9274, 3.3769, 6.8686, 3.0914, 4.9378, 3.1091 ,3.2823, 3.8594, 

4.0480, 4.1685, 3.6426, 3.2110, 2.8636, 3.2218, 2.9078, 3.6346, 2.7957, 4.2781, 4.2202, 1.5157, 2.6029, 3.3592, 

2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 2.1901, 2.4141, 1.9048).  

  

       Based on the values presented in Table 6, it is evident that the OGRIW distribution exhibits the minimum values 

for various information criteria, including AIC, CAIC, BIC, HQIC, as well as the KS, W and A tests, in comparison to 

the competing distributions. Additionally, the OGRIW distribution demonstrates the highest P-value for the KS test. 

       These observations lead us to conclude that the OGRIW distribution provides the best fit for the second dataset. 

Furthermore, Figure 3 further supports this conclusion, illustrating that our distribution outperforms the comparative 

distributions, reaffirming its superiority in accurately modelling the data. 

       In summary, based on the superior performance in terms of information criteria and goodness-of-fit tests, we can 

confidently conclude that the OGRIW distribution is the most suitable model for the second dataset. 

 

Table 5. - Statistical description for Data (II). 

Var n mean Sd median Min Max SK KU 

x 36 3.28 1 3.18 1.52 6.87 1.16 2.81 

 

Table 6. - Goodness-of-fit statistics and KS p-value for Data (II). 

 

Distribution 

 

 

MLEs 

 

-2L 

 

AIC 

 

CAIC 

 

BIC 

 

HQIC 

 

W 

 

A 

 

K-S 

 

p-

value 

 

OGRIW 

: 0.1032 

: 5.6016 

: 0.3738 

: 0.6856 

 

48.11 

 

104.23 

 

105.52 

 

110.56 

 

106.44 

 

0.0970 

 

0.5674 

 

0.1063 

 

0.810 

 

TEEIW 

: 7.8910 

: 0.4835 

: 29.2929 

: 1.9110 

 

48.46 

 

104.92 

 

106.21 

 

111.26 

 

107.13 

 

0.1112 

 

0.6702 

 

1.1342 

 

0.535 

 

BeIW 

: 4.0700 

: 5.5173 

: 4.4957 

: 1.4549 

 

49.26 

 

106.54 

 

107.83 

 

112.87 

 

108.75 

 

0.1398 

 

0.8435 

 

0.1382 

 

0.496 

 

KuIW 

: 3.8275 

: 5.0458 

: 3.8863 

: 1.7484 

 

48.77 

 

105.54 

 

106.83 

 

111.87 

 

107.75 

 

0.1237 

 

0.7443 

 

0.1334 

 

0.542 

 

EGIW 

: 4.5081 

: 3.9705 

: 5.0300 

: 1.3521 

 

49.76 

 

107.54 

 

108.83 

 

113.87 

 

109.75 

 

0.1548 

 

0.9366 

 

0.1419 

 

0.463 

 

WeIW 

: 3.1630 

 : 5.3552 

: 5.6274 

: 5.7108 

 

48.85 

 

105.71 

 

107.002 

 

112.04 

 

107.92 

 

0.1303 

 

0.7750 

 

0.1280 

 

0.596 

 

GoIW 

: 0.1733 

: 1.3903 

: 4.1515 

: 2.2586 

 

50.80 

 

109.62 

 

110.91 

 

115.95 

 

111.83 

 

0.1567 

 

0.8947 

 

0.1338 

 

0.539 

 

RIW 

: 2.8748 

: 4.0349 

: 1.5845 

 

52.92 

 

111.84 

 

112.59 

 

116.59 

 

113.49 

 

0.2548 

 

1.5282 

 

0.1737 

 

0.227 
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e 

 

f 

 
g 

 

h 

 

 

FIGURE 3.- (e) and (g) Estimated PDF and (f) and (h) CDF for data 2. 
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6. Conclusions  
 

       This paper introduces a novel family of continuous distributions called the Odd Generalized Rayleigh-G Family, 

with a special sub-model known as the odd Generalized Rayleigh Inverse Weibull (OGRIW) distribution. The OGRIW 

distribution is characterised by various mathematical properties, including moments, moment generating function, 

incomplete moments, quantile function, order statistics and Rényi entropy. The parameters of the OGRIW distribution 

are estimated using the Maximum Likelihood Estimation method. 

 

       The application of the proposed OGRIW model to COVID-19 mortality rate data from Mexico and Canada 

demonstrates its superiority over several competitive models. When compared to alternatives, including the Truncated 

Exponentiated Exponential Inverse Weibull distribution, Beta Inverse Weibull distribution, Kumaraswamy Inverse 

Weibull distribution, Exponential Generalized Inverse Weibull distribution, Weibull Inverse Weibull distribution, 

Rayleigh Inverse Weibull distribution, Gompertz Inverse Weibull distribution, Burr type X distribution, Rayleigh 

distribution and Inverse Weibull distribution, the findings suggest that the OGRIW model provides a better fit and more 

accurate representation of the COVID-19 mortality rate data. 
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