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1. INTRODUCTION 

Remote sensing is the process of collecting information about an object, area, or phenomenon without direct 

physical contact. This is typically achieved using sensors mounted on platforms such as satellites, aircraft, or drones to 

detect and record data from a distance. Remote sensing enables the observation and measurement of various 

characteristics of the Earth’s surface or atmosphere, including but not limited to land cover, vegetation health, 

temperature, and atmospheric conditions [1]. 

The sensors used in remote sensing capture data in the form of images or digital signals across the 

electromagnetic spectrum. These data can then be analyzed to extract valuable information for various applications, 

such as environmental monitoring, resource management, agriculture, urban planning, disaster assessment, and 

scientific research. Remote sensing technology is crucial in acquiring detailed and large-scale information about the 

Earth, facilitating informed decision-making and understanding of our planet’s dynamic processes [2]. 

Geomatics is a multidisciplinary field specializing in automated processing and managing complex 2D or 3D 

data. It entails the collection, storage, integration, modeling, and analysis of spatially referenced information in digital 

formats with high accuracy and consistency [1]. Geomatics uses various tools and data collection techniques, including 

remote sensing, to effectively handle large volumes of data in an interdisciplinary and interoperable manner. This field 

encompasses various sub-disciplines, such as surveying, geodesy, geology, photogrammetry, and cartography, which 

are all interconnected to facilitate the acquisition and representation of data [1]. 

Geomatics encompasses a wide range of data data formats derived from diverse systems and platforms. These 

include RGB, multispectral, hyperspectral, and thermal images, along with trajectories and point clouds acquired 

through remote sensing methods. The processing of this data often relies on manual or semi-automatic procedures, as 

full automation has not yet achieved the desired standards of reliability and accuracy. After processing the data, the 

georeferenced information is meticulously documented, manipulated, displayed, and stored within geographic 

information systems (GIS) or generic databases. However, the emergence of big data has necessitated the use of 

specialized computational techniques such as artificial intelligence (AI), machine learning (ML), and deep learning 

(DL) for effectively analyzing and harnessing the vast wealth of information it contains [2][3]. 
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One significant advantage of AI is its capability to recognize meaningful patterns within intricate and non-linear 

geomatics data without the need for explicit, pre-programmed instructions. The efficacy of DL and AI algorithms has 

been demonstrated in various geomatics applications, particularly remote sensing [4]. Depending on the nature of the 

collected data, diverse AI techniques are put forth, encompassing classification, semantic segmentation, and object 

detection [4]. 

Remote sensing is pivotal in integrating geomatics and artificial intelligence (GeoAI). By utilizing sensors on 

satellites, aircraft, and drones, remote sensing gathers valuable information about the Earth’s surface without direct 

contact. This diverse data includes optical, multispectral, hyperspectral, thermal, and LiDAR data. GeoAI and 

geomatics rely heavily on remote sensing data as input for AI and ML algorithms. This enables them to analyze, 

interpret, and derive meaningful patterns and insights from vast geospatial information [5]. Its roles encompass data 

acquisition over large areas, feature extraction, change detection, image classification, semantic segmentation, object 

detection, environmental monitoring, disaster management, and precision agriculture. By harnessing remote sensing 

data, GeoAI revolutionizes environmental management, disaster response, precision agriculture, and various other 

fields, paving the way for well-informed decision-making and promoting sustainable development [5]. 

The article explores the fascinating realm of GeoAI, delving into various algorithms and models that contribute 

to this field. It emphasizes the fundamental role of geomatics as a rich source of data. The content covers various 

topics, from RGB-D cameras to infrared cameras, digital photogrammetry, terrestrial laser scanning, and remote 

sensing with multispectral data and hyperspectral data. Additionally, the article discusses the significance of Global 

Navigation Satellite System (GNSS) positioning. By examining these technologies and methodologies, the article aims 

to provide insights into the diverse aspects of GeoAI and its applications in the geospatial domain. The concluding 

section summarizes the key findings and implications of the discussed content. 

 

2. ALGORITHMS AND MODELS FOR GeoAI 

AI aims to emulate the functioning of the human brain and develop advanced algorithms based on acquired data. 

The development of AI and its subsets, such as ML and DL, has ushered in significant transformations in data analysis 

[6]. ML and rule-based tools were originally designed to extract meaningful patterns from data. However, with the 

advent of multimedia big data, the adoption of DL approaches has become more prevalent. DL offers increased 

efficiency and capability in handling the vast datasets generated by modern applications, effectively addressing the 

complexities inherent in analyzing and interpreting geomatics data. In contrast to traditional ML models, DL models, 

particularly Deep Neural Networks (DNNs), can learn and adapt continuously, rendering them highly effective in real-

world tasks [3]. 

DNN structures are increasingly employed in geomatics due to their ability to extract essential features from 

data. Despite being initially considered “black box” operators, the need for DNNs to be interpretable and 

understandable is increasing [7]. Geomatics tasks solved using ML and DL models can be summarized as follows: 

• Clustering [8]. 

• Classification and Prediction [9]. 

• Object Detection [10]. 

• Segmentation [11]. 

• Part Segmentation [12]. 

• Semantic Segmentation [13]. 

These tasks encompass various applications. DL models have proved highly effective in extracting meaningful 

information and patterns from geomatics data, leading to significant advancements in various domains [13]. 

Clustering involves learning a target function (f) that maps an input vector (x) to one of the predefined labels 

(y). The objective is to build classification models with a strong predictive ability to accurately predict class labels for 

new data [14]. 

Object detection is the task of identifying and categorizing instances of objects (e.g., people, animals, or 

vehicles) within an image. It forms the basis of various computer vision applications, including event segmentation, 

image captioning, and object tracking. Object detection can be classified as “general object detection,” which identify 

multiple types of objects using a single framework or “detection applications,” which recognize objects of a specific 

class under certain conditions. Models for object location can be additionally separated into two classes: two-stage and 

one-stage finders [14]. 

Image segmentation is a fundamental research area with applications in various fields, such as industrial signal 

processing and biomedical diagnostics. It entails dividing a picture into isolated areas (portions) that possess 

comparable qualities, such as splendor, variety, and surface. The division is implemented to remove objects of interest 

from a picture, which is an intricate issue due to the presence of different semantic articles [15]. 

Recent studies [15] have shown that DL approaches have demonstrated remarkable performance in object 

instance segmentation, covering rigid and non-rigid objects. Image division breaks down the parcel picture into various 

areas, each of which corresponds to a particular item. Semantic segmentation surpasses mere image segmentation by 
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dividing the image into regions and assigning a class label to each identified region. Semantic segmentation involves 

labeling and defining sets of pixels in an image, such as identifying animals, people, or buildings. 

Semantic segmentation is a valuable alternative to object detection, especially for identifying intricately shaped 

objects. In contrast to object detection, which requires objects to fit within bounding boxes, semantic segmentation 

enables the identification of objects at the pixel level, making it effective for objects with complex shapes [15]. 

Furthermore, semantic segmentation has gained importance in understanding 3D scenes, particularly in the 

context of point clouds. AI-driven approaches have emerged to recognize objects in 3D scenes automatically, leading to 

various methods proposed in recent years [16]. 

 

3. GEOMATICS: A FUNDAMENTAL SOURCE OF DATA 
This section will try to classify the different kinds of sensors utilized for information procurement and portray 

their quality. The grouping depends on obtaining gadgets and information highlights, considering yield information, 

organizing, dynamic/uninvolved sensors, and setting off. It is critical to note that this survey does not include all 

geomatics strategies in favor of focusing on sensors that generate complex information that necessitate factual learning-

based approaches. 

Geomatics surpasses basic distance and point estimations by managing multiresolution geospatial and spatio-

worldly information for different logical, design, and regulatory applications. This incorporates perception and 

estimation of different spatial, unearthly, and worldly goals, for example, computerized symbolism with various pixel 

sizes and ghastly groups [17]. 

Traditional surveying has evolved with new technologies; positioning and navigation can now be achieved using 

various devices. Geographic mapping, once requiring complex calculations, is now facilitated by geospatial 

information or GIS. Digital images from various sensors, including satellites and smartphones, serve diverse purposes, 

from environmental assessment to virtual simulations [17]. 

Sophisticated digital processing, portable setups, and readily available equipment such as Terrestrial Laser 

Scanners (TLS) have replaced traditional surveying methods and photogrammetric transformation algorithms. High-

resolution satellite and aerial images enable regional-level analysis and land use classification, while advanced 

techniques such as LiDAR and radar pulse describe shapes [18]. 

Contemporary acquisition tools are now able to capture highly intricate, architectural-scale objects. Despite their 

affordability, equipment such as cameras, compact robots, and depth sensors can effectively execute modeling tasks, 

albeit with certain degree of compromised precision. To achieve higher levels of accuracy, georeferencing these 

complex models often necessitates the use of GNSS receivers or TLS technology [19]. 

Geomatics is utilized across various domains, encompassing the natural environment, quality of life in rural and 

urban settings, disaster prediction, security measures, recovery efforts, and the documentation and conservation of 

archaeological sites. It can address a multitude of scales. While it is not a one-size-fits-all solution, integrating diverse 

information and techniques is the most effective approach for 3D analysis, positioning, and feature extraction [19]. 

 

3.1 RGB-D CAMERAS 

Before the release of Microsoft Kinect in November 2010, acquiring depth data from images was a complex and 

costly process. Recent efforts have capitalized on the growing prevalence of depth sensors and the advancements in ML 

and DL [20]. 

RGB-D cameras provide color information and depth map reconstruction capabilities [6]. Depth images add a 

third dimension, enhancing various computer vision tasks such as background removal, scene segmentation, object and 

person tracking, 3D environment reconstruction, body pose recognition and gesture-based interfaces. 

Depth maps are obtained using pattern projection techniques with stereo vision systems involving periodic 2D 

patterns or pseudo-random 2D patterns for dynamic triangulation. 

In urban/rural semantic segmentation, [10] propose a DL approach using RGB-D images extracted from traffic 

scenes. They adapt AlexNet for semantic pixel-wise segmentation, improving accuracy on contrast maps. 

[21] use a DL brain network for semantic segmentation in commercial buildings. Their dataset covers 13 

building components, employing DeepLab for segmentation and validating its effectiveness against other DL 

techniques. 

RGB-D images are also utilized in localization tasks and 3D object part segmentation, showcasing their true 

potential in diverse computer vision applications [22]. 

 

3.2 INFRARED CAMERAS 

Thermography, also known as thermovision, is a secure and precise system that provides real-time infrared 

imagery depicting the surface temperature of objects. These images are commonly portrayed using false color scales, 

wherein each color represents a distinct temperature range. When coupled with AI-powered image processing, Infrared 

Thermography (IRT) demonstrates remarkable proficiency in identifying and scrutinizing instances of damage or 

failure [12]. 
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Table 1 presents a comprehensive overview of research studies on defect detection and classification using 

various ML and DL approaches applied to thermal and infrared images. These studies address critical challenges in 

diverse domains, from industrial equipment monitoring to photovoltaic (PV) module inspection. Researchers have 

explored novel approaches and algorithms to accurately identify defects, faults, and anomalies in different objects and 

components, leveraging the power of AI [12]. 

 

Table 1. Advancements in Defect Detection Using Thermal and Infrared Imaging: A Comparative Review of DL 
and DL Approaches 

 

Researchers Research 

Idea 

Problem to Solve Methodology Results Main Contribution 

[23] MLP for 

thermal 

condition 

classification 

Classify thermal 

conditions into 

“defect” and 

“non-defect.” 

Extract statistical 

features and 

augment with a 

graph cut. 

Improved 

classification 

performance 

Effective use of 

MLP and graph cut 

for defect detection 

[24] CNN for fault 

detection in 

cooling 

radiators 

Detect faults in 

cooling radiators. 

VGG-16-based 

CNN architecture 

High 

performance and 

accuracy in 

various 

conditions 

Effective application 

of CNN for fault 

detection 

[25] DL model for 

temperature 

increase 

detection 

Detect 

temperature 

increases in high-

voltage 

instruments. 

Infrared thermal 

image-based CNN 

followed by ML 

models 

Effective 

classification of 

defective and 

non-defective 

classes 

A novel model for 

temperature increase 

detection 

[26] ANN for fault 

classification 

in electrical 

equipment 

Classify faults in 

electrical 

equipment. 

Use of coefficient 

features 

Improved 

performance 

compared to raw 

data 

Better fault 

classification using 

coefficients 

[27] Deep Neural 

Network for 

infrared image 

classification 

Classify infrared 

images into 

“defect” and 

“non-defect.” 

Opposition-based 

Dragonfly 

Algorithm for 

feature extraction 

Outperforms 

other methods in 

classification 

performance 

Improved infrared 

image classification 

[28] DL algorithms 

for defect 

detection in 

PV modules 

Detect defects in 

infrared images of 

PV modules. 

VGG-UNet and 

Mask R-CNN 

architectures 

Successful 

automatic 

identification of 

defects in PV 

modules 

Application of DL 

algorithms for defect 

detection in PV 

modules 

[15] DL algorithms 

for defect 

detection in 

PV modules 

Detect defects in 

infrared images of 

PV modules. 

VGG-UNet and 

Mask R-CNN 

architectures 

Successful 

automatic 

identification of 

defects in PV 

modules 

Application of DL 

algorithms for defect 

detection in PV 

modules 

[29] DL algorithms 

for defect 

detection in 

PV modules 

Detect defects in 

infrared images of 

PV modules. 

VGG-UNet and 

Mask R-CNN 

architectures 

Successful 

automatic 

identification of 

defects in PV 

modules 

Application of DL 

algorithms for defect 

detection in PV 

modules 

 

Each row in the table represents a distinct research effort and highlights the key components of the study, 

including the authors’ names, the research idea, the specific problem they aim to solve, the methodology adopted, the 

achieved results, and the main contributions of their work. By summarizing these essential aspects, the table allows 

readers to quickly grasp the core aspects of each study and comprehend the advancements made in the field of defect 

detection using thermal and infrared imaging techniques [6]. 

The selected research works demonstrate a variety of methodologies, from traditional approaches such as 

Multilayer Perceptrons (MLP) and Artificial Neural Networks (ANN) to cutting-edge techniques such as Convolutional 

Neural Networks (CNN) and DL architectures such as VGG-UNet and Mask R-CNN. Utilizing different algorithms 

and models signifies the ongoing efforts to optimize and enhance the accuracy and efficiency of defect detection 

systems [12]. 
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3.3 DIGITAL PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING 

Photogrammetry and 3D laser scanning technologies have significantly propelled the field of geomatics, 

offering accurate measurements of objects’ dimensions, shapes, and spatial placement. Within the geospatial realm, ML 

and DL methodologies have effectively found applications in tasks such as point cloud classification and semantic 

segmentation [30]. 

Table 2 provides a comprehensive overview of research studies in geomatics that utilize DL approaches to 

analyze and segment 3D point clouds. Geomatics involves the collection, processing, and analysis of spatial data, and 

DL has shown significant potential for enhancing the accuracy and efficiency of various geomatic tasks. 

The researchers listed in the table have contributed novel ideas and methodologies to address specific 3D point 

cloud analysis challenges. Each study focuses on a unique research idea and seeks to solve specific problems, such as 

semantic segmentation, feature extraction, and object recognition. These DL-based approaches offer valuable insights 

into processing complex 3D data from diverse sources, including lidar systems and remote sensing platforms. 

 

Table 2. DL Approaches for 3D Point Cloud Analysis in Geomatics 

Researchers Research Idea Problem to Solve Methodology Results Main 

Contribution 

[31] DL algorithm for 

3D point cloud 

semantic 

segmentation 

Direct semantic 

segmentation of 

3D point clouds 

DL architecture 

for semantic 

segmentation 

Improved 

performance in 

semantic 

segmentation 

Pioneering DL 

algorithm for 

direct 3D point 

cloud semantic 

segmentation 

[32] Optimized DL 

architecture for 3D 

point cloud 

segmentation 

Capture local 

geometries in 

point clouds 

Hierarchical 

grouping to 

enhance local 

feature learning 

Better 

performance 

compared to other 

methods 

Enhanced DL 

approach for 

improved 3D 

point cloud 

segmentation 

[33] DL approach for 

handling 3D point 

clouds with 

spectral 

information 

Accommodate 

complex 3D data 

from Lidar 

systems 

Modified 

PointNet for 

spectral 3D 

point cloud 

processing 

Outperformed 

other methods 

Efficient DL 

model for 

spectral 3D 

point cloud 

analysis 

[34] DL approaches for 

semantic parsing 

of urban building 

point clouds 

Semantic parsing 

of 3D point 

clouds of urban 

buildings 

DL-based 

semantic 

parsing 

techniques 

Accurate semantic 

segmentation of 

urban building 

scenes 

Extensive use of 

DL methods for 

urban building 

point cloud 

analysis 

[6] Improved DGCNN 

for semantically 

segmenting 

architectural 3D 

point clouds 

Semantically 

segment 3D point 

clouds of 

architectural 

elements 

Improved 

DGCNN with 

meaningful 

features 

Efficient and 

accurate semantic 

segmentation of 

architectural 

elements 

Advanced DL 

approach for 

Digital Cultural 

Heritage (DCH) 

applications 

[35] DL-based 

framework for 

road marking 

extraction and 

classification from 

MLS point clouds 

Extraction, 

classification, and 

completion of 

road markings 

from 3D MLS 

point clouds 

Modified UNet 

architecture and 

clustering-

based approach 

Accurate 

extraction and 

classification of 

road markings 

DL-based 

framework for 

efficient road 

marking analysis 

in MLS point 

clouds 

 

3.4 REMOTE SENSING: MULTISPECTRAL AND HYPERSPECTRAL DATA 

In recent years, remote sensing has seen significant advancements with the integration of ML and DL 

approaches, particularly in the analysis of Multispectral (MSI) and Hyperspectral (HSI) images [36]. These approaches 

have been adopted to expedite time-consuming processes in various studies. This section focuses on papers utilizing 

DL algorithms for HSI/MSI image classification of urban/rural scenes [37]. 

Table 3 provides a comprehensive overview of several pioneering research studies that have leveraged DL 

methodologies for image classification in remote sensing. Each study offers unique insights into developing and 

applying DL-based architectures for solving specific problems in remote sensing analysis. The researchers’ ideas, 

problems addressed, methodologies employed, results obtained, and the main contributions of each study are 

summarized and organized. 
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Table 3. Summary of DL-based Approaches in Remote Sensing for Image Classification 

Researchers Research Idea Problem to Solve Methodology Results Main 

Contribution 

[38] Evaluate supervised 

ML classifiers for 

vegetation classes 

Discrimination of 

vegetation 

physiognomic 

classes 

Supervised ML 

classifiers 

(Random Forests) 

High 

accuracy and 

kappa 

coefficient 

Identification of the 

best classifier for 

vegetation 

classification 

[39] Spectral-spatial 

residual network for 

HSI classification 

Hyperspectral image 

classification for 

various scenes 

Spectral-spatial 

residual network 

(SSRN) 

Good 

classification 

accuracy 

Effective 

architecture for HSI 

classification 

[40] Introduce various 

CNN architectures for 

HSI classification 

Hyperspectral image 

classification with 

spatial context 

Convolutional 

Neural Networks 

(2DCNN, 

3DCNN, 

recurrent 

2DCNN, 

recurrent 

3DCNN) 

Improved 

classification 

accuracy 

Comparison of DL 

methods against 

traditional ones 

[41] Propose a semi-

supervised DL 

approach for HSI 

classification 

Utilize limited 

labeled data and 

pseudo-labels 

A semi-

supervised DL 

approach with 

unlabeled data 

Enhanced 

classification 

performance 

Efficient utilization 

of limited labeled 

data 

[42] Classification 

framework based on 

spectral-spatial 

features 

Hyperspectral image 

classification with 

spectral and spatial 

features 

Local 

discriminant 

algorithm for 

spectral features, 

CNN for spatial 

features 

Superior 

classification 

accuracy 

Effective 

combination of 

spectral and spatial 

features 

[43] A DL-based target 

detection method for 

hyperspectral images 

Detect changes in 

hyperspectral 

images 

Convolutional 

Neural Network 

(CNN) 

Accurate 

anomaly 

detection 

Effective DL 

approach for target 

detection 

[44] Active DL for 

hyperspectral image 

classification 

Select informative 

training samples 

actively 

Weighted 

incremental 

dictionary 

learning, active 

training 

Improved 

classification 

performance 

Efficient active 

learning in 

hyperspectral 

image classification 

[45] X-ModalNet 

framework for MSI 

and SAR 

classification 

Classify 

multispectral and 

synthetic aperture 

radar data 

Cross-modal DL 

framework (X-

ModalNet) 

Improved 

classification 

performance 

Effective cross-

modal DL approach 

for remote sensing 

data 

[46] Unsupervised DL for 

detecting changes in 

SAR images 

Detect changes in 

synthetic aperture 

radar images 

Convolutional 

Neural Network 

(CNN) 

Successful 

change 

detection 

Effective 

unsupervised DL 

approach for 

change detection 

 

3.5 GNSS POSITIONING 

GNSS (Global Navigation Satellite System) has revolutionized positioning systems, offering low-cost solutions for 

various applications, including trajectory forecasting. With the increasing availability of GNSS data, researchers have 

actively explored its applications in pedestrian and vehicle trajectory analysis. This table summarizes several significant 

research papers that leverage DL techniques for trajectory analysis based on GNSS data [47]. 

Table 4 presents a compilation of recent research studies focusing on transport mode estimation and short-term 

traffic prediction using GPS trajectories. GPS (Global Positioning System) has become a widely available technology, 

offering vast amounts of movement data for pedestrians and vehicles. As a result, trajectory forecasting has gained 

significant attention due to its numerous real-world applications in transportation management, traffic control, human 

behavior research, and more. 

 

 

 

 

 



Abeer A. Mohamad Alshiha., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 3 (2024) p. 262-252  

 258 

Table 4. Research Studies on Transport Mode and Traffic Prediction Using GPS Trajectories 

Researchers Research Idea Problem to 

Solve 

Methodology Results Main 

Contribution 

[48] Estimation of 

users’ transport 

modes from 

movement 

trajectories using 

a deep neural 

network for 

automatic feature 

extraction. 

Transport mode 

estimation from 

movement 

trajectories. 

Deep neural 

network for 

automatic feature 

extraction in a 

supervised 

manner. 

Demonstrated 

effectiveness 

through 

experiments 

using real 

datasets. 

Proposed method 

for automatically 

extracting 

features using a 

deep neural 

network for 

transport mode 

estimation. 

[49] Non-parametric, 

data-driven 

methodology for 

short-term traffic 

prediction using 

an advanced K-

Nearest 

Neighbor 

algorithm. 

Short-term traffic 

prediction based 

on similar traffic 

patterns. 

Advanced K-

Nearest Neighbor 

algorithm with 

winsorization and 

rank exponent. 

Robust 

methodology 

demonstrated 

through large 

datasets from 

different regions. 

Presented a data-

driven method 

for short-term 

traffic prediction, 

outperforming 

advanced time 

series models 

such as SARIMA 

and Kalman 

Filter. 

[50] Inferring hybrid 

transport modes 

using GPS data 

and tree-based 

ensemble 

models. 

Identification of 

hybrid transport 

modes from GPS 

data. 

Statistical 

approach for 

global features 

and tree-based 

ensemble models 

for classification. 

Improved 

classification 

accuracy through 

the use of tree-

based ensemble 

models. 

Proposed method 

for identifying 

hybrid transport 

modes based on 

GPS data, 

achieving better 

performance than 

traditional 

methods. 

[51] Efficient travel 

mode 

identification 

using raw GPS 

data and a 

tailored deep 

neural network. 

Efficient travel 

mode 

identification 

from raw GPS 

data. 

Tailored deep 

neural network 

architecture for 

travel mode 

identification. 

Significantly 

exceeded state-

of-the-art travel 

mode 

identification 

results. 

Introduced an 

efficient deep 

neural network 

approach for 

travel mode 

identification 

using raw GPS 

data. 

[52] SECA: 

Combining 

autoencoder and 

convolutional 

neural networks 

for mode 

classification. 

Mode 

classification of 

GPS trajectories. 

SECA architecture 

combining 

autoencoder and 

convolutional 

neural networks. 

Addressed issues 

in transportation 

planning and 

management 

using the SECA 

model. 

Introduced 

SECA 

architecture for 

model 

classification, 

overcoming the 

limitations of 

hand-built 

functionality in 

modality 

inference models. 

[53] Data-driven 

approach using 

GPS and sensor-

based traces to 

understand 

visitor 

Understanding 

visitor 

trajectories in 

urban parks for 

planning and 

management. 

Trajectory 

classification 

algorithm for 

urban park usage 

analysis. 

Provided insights 

into park visitor 

trajectories 

through a data-

driven approach. 

Introduced a 

data-driven 

method for 

understanding 

how urban parks 

are used by 
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trajectories in 

urban parks. 

visitors, 

facilitating park 

planning and 

management. 

 

4. DISCUSSION  

This article offers a comprehensive exploration of the intersection between geomatics and GeoAI, highlighting 
the pivotal role of geomatics as a fundamental source of complex 2D or 3D spatially referenced data. It emphasizes the 
multidisciplinary nature of geomatics, incorporating various sub-disciplines such as surveying, geodesy, 
photogrammetry, and remote sensing. This paper examines the integration of AI, ML, and DL techniques in geomatics, 
showcasing their effectiveness in handling diverse datasets and extracting meaningful patterns. 

The discussion is organized into distinct sections that cover different aspects of GeoAI. The algorithms and 
models for GeoAI are explored, emphasizing the transformative impact of AI and DL in handling large and intricate 
geospatial data. The article underscores the significance of remote sensing data gathered through satellites, aircraft, and 
drones as a fundamental input for AI and ML algorithms. Applications of remote sensing in environmental 
management, disaster response, precision agriculture, and beyond are detailed, highlighting GeoAI’s potential for 
informed decision-making and sustainable development. 

The subsequent sections delve into specific technologies, such as RGB-D cameras, infrared cameras, digital 
photogrammetry, terrestrial laser scanning, and GNSS positioning. Each technology is discussed in the context of its 
role in geomatics and its integration with AI and DL techniques. The article provides examples of how AI algorithms, 
particularly DL, enhance tasks such as semantic segmentation, object detection, and defect detection in various 
geospatial data types. 

Moreover, the discussion extends to the realm of digital photogrammetry and terrestrial laser scanning, 
illustrating their impact on geomatics and how ML and DL methodologies enhance point cloud classification and 
semantic segmentation. 

In remote sensing, the article explores the applications of ML and DL in analyzing multispectral and 
hyperspectral data. The tables summarize key research studies, showcasing the diverse methodologies employed for 
image classification, defect detection, and change detection in remote sensing applications. 

This article concludes with a focus on GNSS positioning, elucidating how this technology has revolutionized 
positioning systems and trajectory forecasting. Various research studies are presented, demonstrating the application of 
deep neural networks for transport mode estimation and short-term traffic prediction using GPS trajectories. 

5. CONCLUSIONS 

AI and ML have significantly transformed various fields, including geospatial analysis. This area benefits from 

the inherent characteristics of data, making ML and DL approaches particularly suitable. These advanced techniques 

have outperformed traditional geospatial modeling, as they help overcome the complexities associated with heuristic-

based simulations and model-based representations. 

The paper presents a comprehensive survey of the literature on implementing AI in geomatics, with a specific 

focus on ML and DL techniques. The authors observe a recent increase in the use of RGB-D data but a slight decline in 

the utilization of IRT data compared to the previous year. Previously, IRT data had seen a surge from 2017 to 2019, but 

it experienced a downturn in 2020. Similarly, research on HSI/MSI data was widespread in 2016 and 2017 but declined 

until 2020, when renewed attention was given to the topic. On the other hand, research on IRT and PC was scarce in 

2016 but has made significant progress in recent years. Due to its versatility and practicality, point cloud processing has 

expanded into various fields such as structural engineering, manufacturing, transportation, construction, forestry, 

environmental studies, and industrial engineering. 

The authors underscore the significance of RGB-D images, thermal imagery, HSI (Hyperspectral Imaging), MSI 

(Multispectral Imaging), and the analysis and management of point clouds within the context of GeoAI. These AI 

techniques are pivotal in advancing infrastructure development and overall progress. Within geomatics data analysis, 

numerous challenges, such as point cloud alignment, semantic segmentation, object detection, and image classification, 

have been effectively tackled through AI methods. The paper examines the methodologies and techniques tailored to 

each type of geospatial data, categorizing and contrasting them from various perspectives while spotlighting their 

specific strengths and limitations. 

Moreover, the authors furnish compelling illustrations of GeoAI applications, encompassing input formats, 

architectural classifications, and applied techniques. This comprehensive review enhances comprehension of research 

issues associated with the implementation of AI in geomatics, setting the stage for further exploration. The paper also 

suggests future research directions, which include augmenting algorithms by incorporating comprehensive features to 

enhance performance. Furthermore, it underscores the urgent need to make AI models interpretable and understandable, 

particularly in light of the ethical concerns posed by “black box” operations, especially within high-stakes decision-

making contexts. The lack of transparency in deep neural networks makes it challenging to justify their use ethically. 

Hence, introducing interpretability and explainability techniques, such as visualization, becomes imperative to facilitate 
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human analysis. Ensuring that AI techniques are interpretable, sustainable, and dependable is paramount, given the 

escalating demand for ethical AI solutions. 
In summary, this article not only introduces the reader to the fundamental concepts of GeoAI and geomatics 

but also provides in-depth insights into the applications of AI and DL across various geospatial technologies. The 
comprehensive discussion and examples underscore the transformative potential of GeoAI in shaping the future of 
geospatial data analysis and decision-making. 
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