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ABSTRACT: This work focuses on finding closed-form analytic solutions of a higher-dimensional fractional model,
in conformable sense, known by the (4+1)-dimensional Fokas equation. Fractional partial differential equations
(FPDEs) and systems can describe heritable real-world occurrences. However, solving such models can be difficult,
especially for nonlinear problems. The homogeneous balancing method (HBM) is investigated and extended to
handle the (4+1)-dimensional Fokas equation with Kerr law nonlinearity. The HBM has the ability to solve linear
and nonlinear fractional problems, incorporating the concepts of some fractional calculus principles, including
fractional derivative techniques. It's important to note that there isn't a single and universally applicable method to
solve such equations due to their complexity. The specific form of the equation and the initial or boundary conditions
influence the solution method chosen. The results obtained from the extended HBM are compared to those in the
literature to prove the strategy's efficacy. This paper proposes expanding the HB technique with result analysis to
solve nonlinear FPDEs, demonstrating its feasibility and efficiency.

Keywords: Fractional Calculus, Homogeneous Balance Method (HBM), (4+1) Fokas Equation, Stability,
Sensitivity.

1. INTRODUCTION

There is little doubt that fractional-order models can provide more precise and adaptable explanations for systems with
long-term memory effects [1]. Fractional calculus serves as a powerful mathematical tool for describing such occurrences
by allowing non-integer-order derivatives and integrals. However, it is important to note that integer-order models may
still be useful in many real-world applications, and the use of fractional calculus is not always necessary or appropriate
[2, 3]. Additionally, although fractional calculus has a long history dating back to the 17th century, its application in
engineering and research has significantly increased recently because of technological advancements and the need for
more advanced modelling tools [4]. Consequently, fractional calculus remains a new and emerging subject, with ongoing
investigations and the development of new techniques and applications [5, 6]. In summary, fractional calculus proves to
be a valuable mathematical tool for modelling systems with long-term memory effects; however, its application is not
universally required or suitable for all applications [7, 8, 9, 10]. Many real-world situations still warrant the application
of classical calculus, and the application of fractional calculus necessitates careful consideration and competence.

This observation underscores the need to solve complex models in fractional calculus theory. Accurately modelling
complex real-world events using this theory is only one step in the process; getting solutions to these models is also
required to completely comprehend the physical and technological aspects of the problem at hand [11]. The solutions to
these models can provide useful insights into the behaviour of the system under study, allowing researchers to make
predictions and devise interventions to enhance the system. However, due to the intricate dynamics involved, acquiring
solutions to these models can be a challenging undertaking. Researchers have worked diligently to develop analytical
approaches and algorithms that can be used to solve these models, and they are continually striving to improve them.
Accurate solutions to complex models are crucial for progress in a wide range of fields, including engineering, physics
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and economics [12, 13, 14]. Fan [15] initially introduced the algebraic method, which has been further enhanced by
Ibrahim et al. who proposed research on obtaining traveling wave solutions from nonlinear partial differential equations
and selected the Benny-Luke equation and Vakhnenko-Parkes equation as illustrations of the method. It has been
emphasised that more travelling wave solutions for nonlinear partial differential equations can be effectively obtained by
employing the repeated homogeneous balance method [16]. Wafaa et al. have also explored the homogeneous balancing
approach (HB) method in their studies on solving nonlinear physical problems (PDE) of generalised regularised long
wave equations, modified dispersive water equations and Kawahara equations [17, 18]. This approach entails identifying
a nonlinear transformation that can be applied to derive the exact solution of the problem [19, 20]. Furthermore, Ibrahim
et al. utilised a modified version of the HB method to address the Riccati equation. They applied this method to the Klein-
Gordon equation with Kerr law non-linearity, resulting in the achievement of numerous exact traveling wave solutions
involving the integration of exponential, hyperbolic, trigonometric and rational functions [21].

Therefore, this study aims to develop the HBM with the ability to solve nonlinear applications and derive solitonic waves
of fractional FPDEs, namely the (4+1)-dimensional Fokas equation.

The (4+1)-dimensional Fokas equation is a generalisation of two nonlinear evolution equations, namely the Kadomtsev-
Petviashvili (KP) and Davy-Stewartson (DS) equations [22]. It has several applications in quantum field theory, solid-
state physics, fluid mechanics, water wave theory, ocean dynamics and many others [23, 24, 25].

The significance of the Fokas equation suggests that the complexification of time may be explored within the framework
of contemporary field theories by investigating the presence of nonlinear integrable equations in a special four-
dimensional setting that incorporates complex time [22]. Therefore, it is crucial to understand the exact solution of the
Fokas equation, including solitary waves, among various other solutions. Recently, Lee et al. constructed several solutions
to the Fokas equation, including traveling wave solutions, by applying a modified tanh-coth technique to solve the
suggested equation [26]. Yang et al. studied potential symmetries and Lie point symmetries of the Fokas equation [27].
Kim et al. employed the analytical solution obtained for the Fokas equation using Hirota’s bilinear method [28].

The concept of fractional calculus will be utilised to develop a new form of HBM, wherein the methods developed will
be capable of addressing the challenge of obtaining analytical solutions for the (4+1)-dimensional Fokas equation under
conformable definitions of differentiability [29].

This paper is structured as follows: In the ‘Method Description’ section, the methodology and general analysis of the
tanh-coth method are specified. The ‘Mathematical Application’ section contains the numerical implementation of the
methods for solving the fractional Fokas equation. In the ‘Results and Discussion’ section, the obtained results are
presented and discussed. Additionally, a proof of the stability and sensitivity analysis of the exact solution is provided.
Finally, the conclusions are presented in the ‘Conclusion’ section.

2. PRELIMINARIES

In fractional calculus, a branch of the broader field, common calculus operators of differentiation and integration are
generalised to non-integer orders. This implies that principles covered by fractional calculus include non-integer order
differentiation and integration. By gaining an understanding of some basic terms and ideas connected to fractional calculus
theory, as described in this section, we can enhance our comprehension of the research presented in the subsequent
sections.

Definition 1 [30]: Let f :[0,00) — R be a function. Then conformable fractional derivative of f of order « is defined
by:

T (x):limf (x +gx“‘)—f (x)

&0 &

Where o e (0,1) and it holds for all x >0 .

o))

If the function f is « — differentiable in (0,1) for | >0 and further limf “’(x) exists, then the conformable

x—0"

derivative at 0 is defined
f“(0)=1limf ' (x) @)
x =0

Also, the conformable integral of function f is defined as:

11f (x)=["“2dt,l 20and & < (0,1) @3)
|
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Theorem 1 [30]: Suppose the functions U and V are o — differentiable at any point x >0 for « € (0,1) . We then
have the following properties:
)T, (au+bv)=aT, (u)+bT (v), abeR

2) Ta(x”)znx”’“, neR
3) T, (k) =0, forany constant k
4T (uw)=uT (v)+vT, (u)
5T, (+)="1% aber
6) Additionally,if the function v is differentiable, then T _ (v )(X) =x' e
3. DESCRIPTION OF METHOD AND ANALYSIS
Consider a nonlinear conformable fractional equation to explain the fundamental concept behind our approach,
F (u ,u.,u_,Df,Dfu,D*u, Df“u,...) =0, 0<a<l @)

Where F polynomial of a function and its partial fractional derivatives. The steps of the proposed technique are as
follows:

Step 1: Assume the complex transformation operator is considered as follows:

O(x,t)=U (£)e" r(x,t)=nx -zt ,§=AX—+B Y ic Z—+1//W——;(t— (5)
24 (24 (24 (24 (24

Where z and n are unknown nonzero constants. The nonlinear FPDE in Eq. (4) is transformed into the non-linear ordinary
differential equation:

H(UUU"U"..)=0 (6)
Here, H is a function of U (cf) , and the prime indicates its derivatives with respectto r

Step 2: Suppose that Eq. (7) has a solution of the form:

u =aO+Z(aigoi+bi(o’i) ©)
i=1
Where a ,b,, i =0,1,2,...n are constants to be computed later, n is a positive integer chosen by balancing the highest
order derivatives term with the nonlinear term in Eq. (2), and ¢ satisfy the following equation [31]
o' =n(p)(u+ve+ip’) ®)

Where u,v and A are real numbers.

Step 3: Eq. (7) may be substituted into Eqg. (8), yielding an algebraic system of equations The solution to this system can
be obtained using Maple, and the solutions to Eq. (11) are all precise solutions to Eq. (9).

4. APPLICATION OF THE HB METHOD

In this section, we explore the space-time conformable fractional order (4+1)-dimensional Fokas equation with the help
of the modified homogeneous balance method.

ou o™ ( éu 0" [ du o°u (ou ou (au o’u
4 -—| — |+ - | +12 — (+12u — |-6 =0, 0<ax<l 9)
ot ox“  ox* \ oy ox“ \ oy ox“ \ oy ox“ \ oy 0z OW
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Where u is an unknown function of time t and 4 spatial dimensions x,y,z,w. This expanded model, Eqg. (9), is

anticipated to elucidate wave phenomena in complex medium. It may capture the dispersion or distortion of surface waves,
offering insights into various phenomena associated with the Kadomtsev-Petviashvili (KP) and Davey-Stewartson (DS)
equations.

Furthermore, considering the aforementioned facts concerning fractional derivatives and the importance of the Fokas

equation, it becomes crucial to investigate the new soliton solutions of Eq. (9). Now, let’s consider the following traveling
wave transformation, which transforms the independent variables into a single variable:

Xa y(Z Z(Z Wa tll
E=A—+B2—4+C—ty——y— (10)
(04 o o o o

Where A,B,C,y, y are real constants. The variable x is explained as the propagation distance, and t is the slow time.
By using the transformations of Eq. (6), then Eq. (5) is then converted into:

AB(AZ—BZ)U"+(4A¢//+6C;()U -6ABU” =0 (11)
Operating the complex transformation
e(t,x)=U (x,t)e"(”) , r(x,t)=mx -zt (12)

Where z and 7 are the constants. Balancing u” with u’in Eq. (12) gives m + 2 = 2m so that m = 2. Thus, the modified
homogeneous balance method admits the following solution:

U =a +ap+ap +be +bp’ (13)
By substituting Eq. (12), Eq. (13) in Eq. (11), along with derivatives of U, and equating the coefficients of the power ¢'

and equal to zero, we obtain a set of equations. By solving this system of algebraic equation with the help of the Maple
software, we obtain:

1ABIn(p)'v:=AB’In(p)’v’+4Ay —6cy

Casel: a, =— =vA(A*-B*)In(p)*, b, =0.
4 AB 3, =vA( )

1 A°BIn(p)'v’ —=AB’In(p)’v’ +4Ay —6C

az Z(Az—Bz)ﬂzln(p)z, b2=0 and o= (p) - ('20) - 4 X .
4 AB(A*-B*)In(p)

1) Whenv’®—4ui<0 with 1#0

@p{ABIn(p)V B ) +4AW_6CZ+(A2—BZ)In(p)ZV(_VE*\/Etam(ﬁj‘fj

4AB 2

+A’In(p) -B’In(p)’ (_V?r\/ﬁtanp(ﬁjgﬂ ol ()

2 2

12

=[A3B In(p)2V2—AB3In(p)2V2+4At//—6c;(+(A2_Bz)|n(p)zv (_\/_+\/ﬁcot [ﬁ]g]
. ,

4AB
+A"In(p) =B’ In(p)’ (—VE+ \/z_icotp (J;_Rjgﬂ g!(r )

| ABIn(p)'v -AB In(p)’v’+4Ay —6cy
4AB

13

+(A2 —Bz)ln(p)zv {—VE+ \/ZR_i(tanp(x/I)efi mn sec, (ﬁ)cf)j
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+A*In(p) ~B*In(p)’ [—V;@(ta“p (VR )& xJmn sec, (VR )é)ﬂ g/ ()

o - A’BIn(p)v:-AB’In(p)'v’ +4Ay —6cy
“ 4AB

o | ABIn(p)v'-AB’In(p)'v+4Ay -6y
e 4AB

+(A2 - Bz)ln (p)'v (—VE+ \/;_R(tanﬂ (\/I)é— mn cot_ (\/I)f)j

At In(p) -B*In(p) (_VT

L (an (7)o (7)) [

2) When R >0 with 420

0] 16={A Bin(p) v -AB In(p) v"+4Ay —boy +(A2—Bz)|n(p)2v (_\L+£(tanh (\/EJSB
4AB 2 2 , 5

oo K S

A’BIn(p)'v’-=AB’In(p)’v’ +4Ay - . {
®17={ () v n(p) v+ 4hy ~Bey +(A2—Bz)|n(/?)V(—V—Jr—\/g[coth( EJSD
4AB 2 2 . 2

e s K (51

3) When g4 >0 with v =1

o _|ABI(p)v'-AB’In(p)v’+4Ay —boy
e 4AB

+(A2—BZ)|n(p)2vA 1(: ﬁtan ABln(p)v -AB In(p)v +4Ay —6Cy
2°\2 7

AB(A*-B")In(p)’
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2
3 2 2 3 2 2
(A2 B%)in(p) £ \/Ztan 1, [ABI(p) v -AB In(p)'v cahy =6z | ||
A 7|2 AB(A*-B*)In(p)

| A’BIn(p)' v -AB’In(p)’v’+4Ap -6y
e 4AB

_1 A°B I *v:i-AB®I v+ 4Ay — 6
+(A*-B")In(p)'va —g”\/zcop n(p) v n(p) v +4Ay —Goy
2\ AB (A*-B)In(p)’

2
3 2.2 3 2 2
(A =B )in(p) \/zcot g ABIn(p)v:-ABIn(p)v 42r4A1//—60;( i)
Al 2 AB (A*-B)In(p)

4) When pd <0 with v =1

o _{AsB In(p)'v:-AB*In(p)'v:+4Ay —6cy

o 4AB

-] [ [T 5

2
3 2.2 3 2.2
(AT -B7)in(o) 4 —\/Zi o | [ABIN(R)' v —AB In(p)'v e TP | P
yl ’ AB (A*-B)In(p)

A’BIn(p)' v’ -AB°In(p)’v’ +4Ay —6cy
e 4AB

3 2 2 3 2 2
+(A*=B")In(p)'v4 —\/Zi coth ABIn(p)v'-AB In(p)v j4AV/_6Cz i |&
A AB(A*-B")In(p)

2
3 2.2 3 2.2
+(AZ—BZ)In(p)2/12 _\/ZI Coth ABIn(p)V _AB |n(p)V ':4Al//—6CZ |§ ei(qx—zt)
yl ’ AB (A*-B)In(p)

112

| A'BIn(p)v' -AB In(p)'v’+4Ay —6Cy
B 4AB

+(AT=B?)In(p)'v {—%i\/%(tanhp(é\/%i )g—cothp(é\/ji )5)
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o(an- )m<u[ o, (gmjghemjgﬂ

5) Whenv =0 with =241
A’BIn(p)'v:-AB°In(p)’v’+4Ay —6cy

®113:
4AB
3 2 2 3 2 2
+(A*=B")In(p)'v 4| tan ABIn(p) v’ —AB '“(P)V HaAy —Goy |,
’ 4AB (A*=B)In(p)
3 2.2 3 2 2
+(A2—BZ)In(p)2/I2 tan A'BIn(p) v -ABIn(p) v +4Ay -6y :
T e enGy
ABIn(p)'v’ AB’In(p)'v’ +4Ay 6o
w 4AB
3 2 2 3 2 2
+(A=B")In(p)'v 2| —cot, ABIn(p) v-ABIn(p) v'+4Ay —bog |,
TP
3 2.2 3 2 2
+(A%=B%)In(p) 2°| ~cot, ABIn(p) v -AB In(p) v +4Ay —6cy :
4AB (A*-B*)In(p)’
A’BIn(p)'v'-AB’In(p)'v' +4Ay—6cy 1. ., _, 2 ( (uj (ﬂ) j
© = +—(A°=B")In vA|tan | = |&—cot | =
“5{ 4AB 2 Jin(e) Ay CaA

Jr%(A2 -B%)In(p)’ 2° (tanp (%jf—cotﬂ (gj gj:|ei('7><ll)

6) When v =0 with u=-4

A’BIn(p)v:-AB’In(p)v’ +4Ay —6cy
e 4AB

~(A*-B")In(p)'v4| tanh A'BIn(p) v’ -AB"In(p)'v +4AV/—60;(} J

4AB (A*=B”)In(p)’

2
A’BIn(p)v’-AB® |n(p)2v2 +4Ay/—6c;(J J i)

+(A*=B*)In(p)" 2*| tanh, [ 4nB (A" ~B*)In(p)
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ABIn(p)v:-AB’In(p)'v’ +4Ay —6cy
®117= 4AB

+(A2_Bz)ln(p)zvﬂ(_cothp(ABln(p)v —~AB’In(p)v +4A1//—6C;(J§J

4AB (A*=B”)In(p)’

2
3 2.2 3 2 2
+(A*=B)In(p)" 2° -cothp[[ABm(p)v —A8 In(p) v +4A"'_GC"]§J g lr )

4AB (A% =B*)In(p)’

A’BIn(p)'v:-AB°In(p)v’ +4Ay —6cy
® = 4AB

+(A2 -B 2)In (p)zv/l(—tanhp (2p) & +ifmn sech (2,u)§)

+(A*=B)In(p) 4* ((—tanhp (2u)&+i~mn sech (zﬂ)g)z)]ewn)

A’BIn(p)v:-AB’In(p) v’ +4Ay —6cy
® = 4AB

+(A2 - Bz)ln(p)zvﬂ(—cothp (2u)&+i Jmn csch (2,u)§)

+(A*=B)In(p) 4* ((—Cothp(Zy)fiimCschp(zﬂ)g)z)}ei("xZt)

A’BIn(p)v:-AB’In(p) v’ +4Ay —6cy
® w= 4AB

+(A? —Bz)ln(p)zv/i(—%tanhp (%)éicothp (%)éj

e e

1ABIn(p)'v:-AB In(p)’v’+4Ay —6cy

Case 2: aO:Z AB a=04a =0
2
(ASB In(p)zvz—ABgIn(p)2v2+4A://—60;()v (A3B In(p)zvz—ABsIn(p)2v2+4AW—60;()
b 4AB 4 e 16A’8%2% (A*~B*)In(p)’

_ABIn(p)'v -AB’In(p)'v'+4Ay —6ey
4ABA(A*-B")In(p)

and u
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1)  When R =v?—4u4<0 with =0

0. A’BIn(p)'v:-AB°In(p)v’ +4Ay —6cy
2 4AB

4AB

+(A3B In(p)zvz—AB3In(p)2V2+4A1//—6c;()v[ v Ri (Eijéj

—+

2 2 3 2 2 2 [
(A8 n(p)v' -AB*In(o)v -sny o) S ( _Ri]fj
_ an e

16A’8% (A% =B")In(p)’

0. - A’BIn(p)’v:—AB°In(p)’v’+4Ay —6cy
2 4AB

(a8 In(p)2v2—AB3In(p)2v2+4Ay/—6C;()V( v JRi [ —Rij jl
+ cot, 5 4

-——+
4AB 2

—+

2

2
(ASB |n(p)2V2—AB3|n(p)2V2+4Al/l—60)() v Ri -Ri “.
cotp 5 el(qxfzt)

16A2|32(A2 BZ)I ? N
-8°)In(p) 2

6. ABIn(p)'v:-AB°In(p)’v’ +4Ay —6cy
o 4AB

(A’BIn(p)'v*-AB’In(p)'v" +4Ay —6oy v
+

(‘\L+ Jz_i (tan, (V=R ) &=~/mn SeCp(\/—_R)S)J_l

4AB 2

2
(AQB In(p)sz—ABaln(p)zvz+4Ay/—60;() ( v +Ri

16A°8° (A ~B*)In(p)’ 2 2

+

(tanp (ﬁ)fi mn sec_ (\/;)g)j_ ol (mm)

.. A’BIn(p)'v:-AB°In(p)'v’ +4Ay —6cy
s 4AB

(ABIn(p)'v’-AB In(p)'v" +4Ay ~6e
+

4AB

I o, (R ), (V7)) |

KB A8 o)y ) [T e, (Ve s, (E)f)r

16AZBZ(A2—BZ)|n(p)Z 2
2) When R >0 with 2#0
A’BIn(p)'v:—AB°In(p)v’+4Ay —6cy

4AB

A°B I ‘v -AB®I V2 +4Ay —6 : :
+( n(p)v n(p) v’ +4Ay CZ)V[_V JRi tanhp( Rl]gj

4AB

®25 =
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(A3|3 In(p)'v:—=AB In(p)'v’ +4Ay —6cy
+

2 )
) v Ri Ri e -at)
- —————tanh | — (& e
16A°8° (A ~B*)In(p) 2 2 2

0. A’BIn(p)'v:-AB°In(p)v’ +4Ay —6cy
o 4AB

(A3B In(p)’'v:-AB*In(p)'v? +4Ay/—6c;()v
+

v Ri Ri
- coth | — |&
4AB 2 2 2

(A3|3 In(p)'v: —=AB In(p)'v’+4Ay —6cy
+

2 )
) v Ri Ri O at)
- —————¢coth | — | e
16A°8° (A ~B*)In(p) 2 2 2

0. A’BIn(p)v:-AB’In(p)'v’ +4Ay —6cy
7 4AB

(A3B In(p)’'v:-AB*In(p)'v? +4Ay/—6c;()v
+

[ v Ri [ Ri] j
coth | — |&
4AB 2 2 2

(A3|3 In(p)'v:—=AB In(p)'v’+4Ay —6cy
+

2 )
) v Ri Ri O at)
- —————¢coth | — | e
16A°8° (A ~B*)In(p) 2 2 2

3) When x4 >0 with v =1

0. - A’BIn(p)'v:—AB°In(p)v’ +4Ay —6cy
o 4AB

(ABIn(p)'v -AB In(p)'v" +4Ay 6oy v
+

(e (2).

2 -
(ASBIn(p)VZ—ABSIn(p)VZ+4A1//—6c;() i (w2 ? e
——tan | — [& e
16A°8" (A" =B")In(p)’ 2 4

2
0. - A’BIn(p)v:-AB°In(p)v’ +4Ay —6cy
a 4AB

+

(ABIn(p)'v -AB In(p)'v" +4Ay —boy v
+

4AB [—%i tanh (/i )fj

2 2 2 -2
(ASBI ‘_AB’I ‘+4Ay —6 ) .
n(p)v n(p)v’+4Ay —boy _ﬁimh (Jari)e| fe
16AZBZ(AZ—BZ)|H(P)2 A .,

A’BIn(p)v:-AB’In(p)'v’ +4Ay —6cy
®210 -
4AB

+
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+(A3B In (p)zvz _ABs In(p)ZVZ +4Al//—6C}()V [_gl tanhp( ‘uﬂi )fjl

4AB

A

2 2 2 -2
(A3B In(p)vZ—ABgln(p)v2+4Aw—6cl) A
+ 2 —ﬁi tanh, (Jui )& | fe'
16A°8° (A ~B*)In(p)

4) When gl <0 with v #1

A’BIn(p)'v:-AB’In(p)'v’ +4Ay —6cy
O, =
4AB

4AB A

+(A3B In(p)'v' ~AB In(p)'v" +4Ay —boy v [ \/;i o (7 )gj

2 2 2 -2
(ASB In(p) v -AB’In(p) v2+4A1//—60;() _
+ —\/;i cothp(«/,uli)f gl

16A°8"° (A°=B")In(p) 2

a2 4AB

ABIn(p)v?—AB°In(p)'v? +4Ay —6C -+
+( n(p)v n(p)v i ;()v (_li\/z[tanhp[@ij§+cothp[ﬂi}fn
4AB 2\ 2 2
AB I ‘vi-AB’I Vi 4Ay -6 ’ 2
+( (o) (o) any - 7) (i\/g(tanh,,(@i}ﬁmmp(@i]gn i)

16A°8° (A" =B")In(p)’

o _{ABB In(p)’'v:-AB’In(p)’v’ +4Ay —6cy

5)Whenv =0 with g=41

ABIn(p)'v:-AB’In(p)’ v’ +4Ay —6cy
Oy =
4AB

+(A3B In(p)'v' ~AB In(p)'v" +4Ay —boy v t AIn(p) +7° . -
an
4AB U Zam(p)
2 -2
ABIn(p)'v —AB In(p)'v’ +4Ay —6cy 22In(0) + 72 _
( ) tan /4 (p) +r gl ler™

+
16A°8° (A ~B*)In(p)’ 7/2/1|n(p)2

ABIn(p)'v:-AB°In(p)’ v’ +4Ay —6cy
Oy, =

4AB
-1
(AaB In (,0)2VZ —~AB’® In(p)zv2 +4Al//—6C;()V (AaB In(p)'v:=AB In(p)'v" +4A«//—6c;()
+ —cot
4)AB i 4AB (A" ~B")In(p)’
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2 2
(ASB In(p)v:-AB In(p)v’ +4Ay/—6c;() (ASB In(p)'v: -=AB In(p) v’ +4Ay/—6c;()
—cot, - ¢ e
4AB/1(A2 —BZ)In(p)

i (qx 711)

+

2,22

162°a%8° (A" ~B")In(p)’

A’BIn(p)v:-AB’In(p)'v’ +4Ay —6cy
4AB

(ASB In(p)’'v:-AB’In(p)v’ +4Aw—60;g)v p DY
+ tanp E g —cot E &

41AB

2
(ABIn(p)v ~AB In(p)’v +4Ay/—6c;() P u) Y2 P
+ tan | — [&—cot | — |& e
"2 "2

®215 =

2,22

162°a%8° (A" =B )In(p)’

6) When v =0 with y=-4

A’BIn(p)v:-AB’In(p)'v’ +4Ay —6cy
Oy =
4AB

3 2 2 3 2 2 2 2 3 2.2 -
+(ABln(p)v ~AB’In(p)'v +4AW—GCZ)V anh | ABIN(p)'v' -AB In(p)'v" +4Ay ~6cy
41AB ’ 4ABA(A*-B*)In(p)’

2 2 2 -2
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+ tanhp (p) (p) l// Z el(qx—zt)

16,12AZBZ(A2—BZ)In(p)2 4AB)p(A2—BZ)In(p)2

A’BIn(p)v:-AB’In(p)'v’ +4Ay —6cy
®217 =
4AB

-1
N (AaB In(p)’'v:-AB*In(p)'v? +4Al//—6C)(>V " A’BIn(p)’v:—AB’In(p)’v’ +4Ay —6cy
—co
41AB “ 4ABA(A*-B*)In(p)’

3 2 2 3 2 2 2 -2
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ABIn(p)'v:—AB’In(p)'v’ +4Ay -6 )
+( n(p)v n(p)v’+4Ay CZ)V(_tanhp(gﬂ)giimSechp(Zy)é)1

41AB

(AQB In(p)'v:—AB In(p)'v’ +4Ay —6cy
+

) (—tanhp(z;l)gii\/ﬁsechp(zﬂ)g)—2 o (m2)

162°A"8"° (A" =B )In(p)’

Now, we will compare our method in equation 6, 6,, 6,, if w=v=2=1=0, In(p)=1 c=4, A=l

12 “16 !

B=05 R=-4, y= % with the exact solution of equation (4.11), (4.12) solved by F —expansion methods under
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the value A =-0.75, B, =1, B,=05 h =05 h,=2, & =0 and the same method under & =1, «, =0.5,

d,=05, d =2, & =0 ofequationu, andu,, we obtained the same solution shown in Table 1, as follows.

Tablel. Comparison between exact solution of HB method with a different method [23, 24, 25]

The F —expansion method The proposed method
Af A,=-3,B,=1 B,=3,h =%, h,=2¢&=0 - If wy=v=z=9=0, In(p)=1 c=4
then u, =—2-3tan” (&) and u,, =—3 -2 tanh” (i &). A=1 B=3%, R=-4  y=5 then
-In another approach of a same method «, =1, «, = 3, 0, =—2sec’(¢£) and 6, =—4—Ftanh* (i &).

d,=1,d=2¢£=0 then u,=-3sec’(¢) and

21

u, =—3-3tanh’(i ¢).

5. STABILITY ANALYSIS

This section discusses the stability of soliton solutions as well as the properties of the Hamiltonian system (HSM). The
momentum of the HSM is given by [32, 33]:

M =05 juzdg (14)
al
Where U is the independent variable and a,, a, are arbitrary constants. The stability of the obtained solutions is

oM
determined by the HSM when the following criterion is — >0 where » is the speed of waves.

o
The solutions presented meet the stability criterion for the parameter values indicated. For example, the solutions to the
space-time conformable fractional order (4+1)-dimensional Fokas equation in Eq. (6) are 0.0073792 of Eq. (11) if t =0.5
, x =5 and the stability of Eq. (12) onthe t =0.5 and » =-0.5 are 17.30719315, which satisfy the stability condition
for the indicated parameter values. As a result, given the various values of the parameters in the supplied range, the soliton

solutions of the other families also satisfy the requirement, which is graphically represented in the next section.
6. SENSITIVITY ANALYSIS

In order to analyse the sensitivity of the considered model in Eq. (9), applying the Galilean operator [34] in Eq.(9) results
the following dynamical system:

2(3ABU’ -3cU y-2AU y)
AB(A*-B")

The dynamical system is considered to have low sensitivity if a small change in starting values results in only a slight
modification in the system dynamics. The critical points of the given system will be determined as follows:

(0’0); (0, Mj
3AB

Based on the numerical values: A =0.7; B =1.4; ¢ =0.6; y =0.8; w =1.5the initial datum of the system is considered
to be closed to the origin as follows: P, =(0.04,0); P, =(0.05,0) and P, =(0.06,0) the solutions are illustrated in Fig.

u'=v;v'=

1(a). Subject to the given parameters, the critical points are the origin and (1.2,0) . The influence, with

P, =(1.25,0); P, =(1.275,0) and P, =(1.3,0) is also considered in Fig. 1(b).
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- Py = P; - P; - Py =P, - P;
U u
1.30
1.5
1.25
1.0
1.20
03 115
i 1.10 .
2 4 6 & 1o 0 2 4 6 8 10
Figure 1. (a) The sensitivity assessment of for Figure 1. (b) The sensitivity assessment of for
different initial values different initial values

6. RESULT AND DISCUSSION

To obtain the soliton solution, the (4+1)-dimensional Fokas equation is solved using the efficient homogeneous technique.
The development of new and more comprehensive solutions for fractional order at various parameter values is the main
goal of this research. The literature has developed a variety of solutions using various methods, including trigonometric,
hyperbolic, and rational forms of solitary wave solutions using the HB approach. We discovered that our strategy is fresh
and more thorough when compared to earlier findings. A novel simulation of 3D graphs called a contour graph gives
more specific information about the physical characteristics of the precise solution. The physical behavior of Eq. (9) is
summarized and illustrated in Figures 2-7.

Figure 2. 3D graphicsof 6, for w =v =z =7 =0, Figure 3. 3D graphics of 6 for w =v =z =5 =0,
In(p)=1c=4, A=05B=%R=-4,. In(p)=1c=4, A=05B=3R =4,
Z=3%=-1..landt=0,..,1. ¥ =75, =-10,...,10 and t = -10,...,10.
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Figure 4. 3D graphics of 0 for v =v =z =75 =0, Figure 5. 3D graphics of 6 _for w =v =z =5 =0,
In(p)=1c =0, A =058 =0,R =4, In(p)=1c =0, A =058 =0,R =4,
x =05,x =-10,..,10 and t =-10,...10 x =05,x =-10,..,10 and t =-10,...10

Figure 6. Contour plotof 8 for u=14=-1In(p)=1, Figure 7. Contour plotof @_ for x=1,A=-1In(p) =1,

v=0y=05x = —5,_...,5 apd t =-5,...,5and contour=3, In (p) =1v =0, y =1,x =-10,...,10 and contour=3,
filledregion=true. filledregion=true.

According to Figures 2-7, the type wave is described from the solution of 6, (x t ) demonstrated in Fig. 2 for choosing
the parameter value for w=V=2=n=0, In(p)=1, c=4, A=05B=3, R=-4, y=+,
x=-1...1landt =0,...,1. Fig. 3 represented 3D of the solitary wave solution of 6, (x ,t) at distinct values of
parameters w=v=2=n=0,In(p)=1 c=4A=05B=1 R=-4 y=5, with
x €[-10,10] and t €[-10,10] . Fig. 4 shows the wave structure solution for different values of 6, (x,t) for
w=v=2=n=0, In(p)=1 c=4, A=05B=0R=-4 =3, x=-10,..,10andt =-10,..,10 in Fig. 5.
Also in Fig. 6 contour plotof & for u =14 =-1, In(p) =1lv =0,y=05x =-5,...,5 andt =-5,...,5Contour=3,
filledregion=true, and contour plot of 8, for x=1,4=-11In (p) =1v =0,y=1x =-10,...,10 and t =-5,...,5
Cntour=3, filledregion=true in Fig.7.

7. CONCLUSION

With their ability to simulate and explain complicated phenomena, such as nonlinear models, FPDEs have grown
significantly in significance among researchers and practitioners. The current study focused on the examination and
creation of an analytical approach known as HBM for solving various FPDEs. HBM can provide close-form solutions
with minimal computing labor. The HBM was utilized to explore the space-time conformable fractional order (4+1)-
dimensional Fokas equation and was used as a case study to successfully test the HBM's accuracy in addressing nonlinear
problems. Additionally, the stability analysis of soliton solutions utilizing the characteristics of the Hamiltonian system
was provided, and it was discovered that the method provides a large selection of different and accurate soliton solutions.
The plotted solutions are stable if there are no breaks or discontinuities, which is a favorable indicator. It's also worth
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noting that when the order of the fractional derivative decreases, the wave deviates from the center. This demonstrates
that the fractional derivative has a major influence on the behavior of soliton solutions. Our focus is on identifying and
studying single solutions for a certain nonlinear partial differential equation. Solitons are one-of-a-kind solutions that can
maintain their shape and speed while traveling over a medium. The figures show the kink, periodic, and singular periodic,
dark and bright dynamical behaviors of some obtained solutions. They are essential in the area of fluid dynamics, and
plasma physics.
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