

Journal Homepage: http://journal.esj.edu.iq/index.php/LJCM e-ISSN: 2788-7421 p-ISSN: 2958-0544

Enhancing the Zebra Optimization Algorithm with Chaotic Sinusoidal Map for Versatile Optimization D.Anand¹*[®] , Osamah Ibrahim Khalaf ^{2®} ,G Rajesh Chandra³ [®]

¹Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, GreenFileds, Vaddeswaram, A.P. – 522302,

² Department of Solar ,Al-Nahrain Research Center for Renewable Energy, Al-Nahrain

University, Jadriya, Baghdad, Iraq,

³Department of Computer Science and Engineeirng, KKR & KSR Institute of Technology and Sciences, Andhra Pradesh, India.

*Corresponding Author: D.Anand

DOI: https://doi.org/10.52866/ijcsm.2024.05.01.023 Received Augest 2023 ; Accepted November 2023 ; Available online February 2024

ABSTRACT In this study, the Chaotic Sinusoidal Map (CSM)-enhanced Zebra Optimization Algorithm (CZOA) is introduced. CZOA combines CSM's integration strengths with ZOA's optimization skills. ZOA already exhibits great optimization capabilities, but the addition of CSM increases its potential even more. This addition greatly strengthens ZOA's exploration and exploitation skills and increases its flexibility for various optimization tasks. CZOA outperforms both the original ZOA and contemporary optimisation methods on 23 benchmark functions, including high-dimensional (FD), multimodal (MM), and unimodal (UM) challenges. Using the chaos of CSM to investigate regional optimal and determine better convergence and exploration-exploitation equilibrium are shown by CZOA, which also shows more profitable solution locations. CZOA demonstrates its resilience and versatility through multiple benchmark activities, underscoring its potential as an adaptable optimisation tool. CZOA becomes a potent metaheuristic by combining biological inspiration and chaotic dynamics to solve difficult optimisation problems. Inspired by the natural behaviour of zebras, the Zebra Optimisation Algorithm (ZOA) is a relatively new optimisation technique. It makes use of a herd behaviour mechanism and the ideas of leadership and following, in which members of the population—zebras in this case—cooperate to solve optimisation issues in the best possible ways.

A chaotic sinusoidal map can improve the ZOA's exploitation and exploration capabilities, increasing its adaptability for optimisation across a range of problem domains. The success of CZOA and its potential as a potent

1. INTRODUCTION

The complexity of optimization issues is rising as science and technology develop and production capacity increases. It has become vital to find effective solutions for these challenging issues. The development of metaheuristic algorithms offers a viable method for addressing optimization issues. They draw their inspiration from natural evolutionary rules, which have evolved over thousands of years in order to increase survival and promote population growth.

The complexity of optimization issues is rising as science and technology develop and production capacity increases. It has become vital to find effective solutions for these challenging issues. The development of metaheuristic algorithms offers a viable method for addressing optimization issues. They draw their inspiration from natural evolutionary rules, which have evolved over thousands of years in order to increase survival and promote population growth.

To overcome challenging issues, researchers have studied these natural processes and created algorithms. In this approach, the optimization issue is abstracting into the best population-inspired solution, the living environment serves as the abstract search space, and the behavior of each member of the population represents a set of solutions. As in the case of the Harris hawks optimizer (HHO) [1], The intricacy of optimisation problems is increasing in tandem with scientific and technological advancements and increased production capacity. It is now essential to identify workable answers for these difficult problems. Creating metaheuristic algorithms provides a workable way to deal with optimisation problems. Natural evolutionary laws, which have developed over thousands of years to boost survival and population development, encourage serve as their source of inspiration. Researchers have examined these natural processes and developed algorithms to solve difficult problems. This method uses the living environment as the abstract search space, the behaviour of each member of the population as a set of solutions, and the optimisation problem as an abstraction into the best population-inspired solution. the Harris Hawks Optimizer (HHO) [1], for example-Numerous issues, including complicated engineering problems, neural networks, shortest route optimization, feature selection, and power scheduling, have been effectively solved using these effective and reliable techniques.

Sheikholeslami et al. [8] demonstrated that a sufficiently random sequence is necessary to ensure better performance in the algorithm's global search phase, particularly for metaheuristic algorithms that simulate and make decisions for complex natural phenomena. Metaheuristic algorithms are capable of solving optimization problems in large-scale search spaces. Metaheuristic methods must include population initialization. It directly affects the effectiveness of the algorithm's search and the caliber of the outcome. Therefore, in order to more effectively address real-world issues, academics have been looking at different strategies to enhance population initialization. One of the most popular metaheuristic initialization techniques is randomized initialization, which builds a population by generating search space solutions at random. One of the best methods for creating a suitably random and evenly dispersed starting sequence for metaheuristic algorithms is to employ chaotic maps. Numerous optimization issues have been addressed by fusing chaotic maps with metaheuristic methods. For instance, in 2023 praveen et al. [9] suggested a faster version of the arithmetic method, while in 2017 Arora et al. [10] suggested leveraging chaos to enhance the butterfly algorithm. The investigations described above have produced promising experimental findings. For limited situations, Kohli et al. [11] chaotic gray wolf optimization algorithm was introduced, and testing showed how efficient it is. Jia et al. [12] demonstrated the viability of a chaotic local search approach by using chaos theory to differential evolution.

Studies on chaotic-based ZOA algorithms are not currently being conducted. Previous studies have shown that combining chaotic maps with metaheuristic techniques has successfully addressed a variety of optimization problems. As a result, we suggest the chaotic-Sinusoidal map-based zebra optimization algorithm, or CZOA, to the best of our understanding. 23 benchmark test functions are used to evaluate the proposed algorithm's performance in order to get the best results from CZOA. In the meantime, a serious issue with the power generation forecast is included for assessment.

2. LITERATURE REVIEW

Metaeuristic algorithms are created using various factors of nature, human behavior, swarms, and games. A few of them are discussed in Table 1 with their motivation.

Ref	&	Algorithm	Motivation
year			
[13]&		Squid Game Optimizer SGO	Korean game
2023			
[14]&		Waterwheel Plant Algorithm	waterwheel plant's
2023			
[15]&		Spider wasp optimizer	female spider wasps
2023			
[16]&		Zebra Optimization Algorithm	Zebras
2023			
[17]&		Mother optimization algorithm	Mother and her children's interaction
2023			
[18]&		hermit crab optimization	Hermit crabs
2023			
[19]&		Orchard Algorithm	fruit gardening
2023			
[20]&		Eagle perching optimizer	eagles' perching
2023			
[21]&		American zebra optimizer	American zebra's
2023			
[22]&		Sparrow Search Optimizer	Sparrows
2023			
[23]&		Drawer Algorithm	Different drawers
2023			
[24]&		Subtraction-Average-Based Optimizer	Mathematical operators
2023			
[25]&		Osprey optimization algorithm	Ospreys
2023			

 Table 1: recent metaheuristic search strategies and their motivation

[26]&	Slime mould algorithm	Slime mould
2020		
[27]&	Energy valley optimizer	particle decay
2023		
[28]&	Green Anaconda Optimization	Green anaconda
2023		
[29]&	Exponential distribution optimizer	exponential probability distribution's
2023		
[30]&	Nutcracker optimizer	Nutcrackers
2023		
[31]&	Coronavirus Mask Protection optimizer	Covid-19
2023		

The unique and unusual sources of inspiration for optimization strategies are where the literature gap in the presented algorithms is found. This unconventional strategy highlights the necessity to investigate and assess these unique sources of inspiration' applicability and efficacy across multiple optimization problem domains. It also creates a vacuum in our knowledge of how they contribute to efficient optimization tactics.

The lack of available literature on unorthodox optimization approaches influenced by various real-world elements creates the requirement for chaotic CZOA implementation. There hasn't been much research on adding chaotic dynamics into the Zebra Optimization Algorithm, despite the fact that many algorithms take inspiration from unusual sources including animals, Covid-19 protection, and more. CZOA may improve the algorithm's exploration and exploitation capabilities, tackling difficult optimization problems in many issue areas. The unique strategy of CZOA tries to fill this gap by incorporating chaos and biological inspiration, providing a viable path for developing optimization tools.

MATHEMATICAL MODELING OF ZOA

Zebras, equine creatures from eastern and southern Africa, are known for their black and white fur and large size. They have long, thin legs and exhibit foraging and predator defense behaviors, with zebras fleeing in zigzags to terrify predators [16].

Zebras are part of the population of ZOA, a population-based optimizer. A matrices may be used to represent the zebra population numerically. The zebras are first placed in a random location inside the search area. Equation (1) specifies the ZOA population matrices.

	Table 2: Z	OA parameters	
Z	zebra population	$z_{i,j}^{new,P1}$	jth dimension value
Z_i	ith zebra	PZ_{j}	jth dimension
$Z_{i,j}$	jth problem variable proposed by the i^{th} zebra	PZ	pioneer zebra which is the best member
Ν	No. of population zebra's	r	random number in interval [0, 1]
m	No. of decision variable's	$F_i^{new,P2}$	objective function value
$Z_{i,j}^{new,P2}$	jth dimension value	$F_i^{new,P1}$	objective function value
$Z_i^{new,P2}$	new status of the ith zebra based on second phase	AX_{j} and AZ	jth dimension value and attacked zebras
Ι	I is the round $(1 + \text{rand})$, rand is $[0, 1]$. Thus, $I \in \{1, 2\}$	R and Ps	constant number equal to 0.01 and randomly generated in [0, 1]
Т.	maximum number of iterations and	rznew,P1	new status of the ith zebra
and t	iteration contour	\mathbf{Z}_{i}	based on first phase

$$Z = \begin{bmatrix} Z_1 \\ Z_i \\ Z_N \end{bmatrix}_{N^*m} = \begin{bmatrix} z_{1,1} & z_{1,j} & z_{1,m} \\ z_{i,1} & z_{i,j} & z_{i,m} \\ z_{N,1} & z_{N,j} & z_{N,m} \end{bmatrix}_{N^*m}$$
(1)

Every zebra represents a possible solution to the optimization problem. Therefore, one may evaluate the objective function by utilizing the suggested values of each zebra for the problem variables. The values obtained for the objective function are given as a vector using equation (2).

$\begin{bmatrix} F_1 \end{bmatrix} \begin{bmatrix} F(Z_1) \end{bmatrix}$	(2)
$F = \left \begin{array}{c} \overline{F_i} \\ \overline{F_i} \end{array} \right = X = \left \begin{array}{c} \overline{F(Z_i)} \\ F(Z$	
$\begin{bmatrix} \overline{F}_N \end{bmatrix}_{N^{\text{eq}}} \begin{bmatrix} \overline{F(Z_N)} \end{bmatrix}_{N^{\text{eq}}}$	

where F is the zebra's achieved aim and F is the objective vector.

PHASE 1: Foraging Behavior Depending on the type and amount of vegetation, zebras may feed for 60–80% of their total time. ZOA refers to the best population member as the pioneer zebra, who points other members of the population in the direction of its location inside the search space. Consequently, it is possible to quantitatively forecast how zebras' positions will vary during the foraging phase by utilizing equations (3) and (4).

$$Z_{i,j}^{new,P1} = Z_{i,j} + r.(PZ_j - I.Z_{i,j})$$

$$Z_{i}^{new,P2} = \begin{cases} S_1 : Z_{i,j} + R.(2r-1) \\ (1 - \frac{t}{T}).Z_{i,j}, & Ps \le 0.5; \\ S_2 : Z_{i,j} + r.(AX_j - I.Z_{i,j}), else, \end{cases}$$
(3)
(4)

Phase Two: Predator Defense Techniques

Lions, cheetahs, leopards, wild dogs, brown hyenas, and spotted hyenas are among the predators that pose a threat to zebras. When they get close the water, they also run into crocodiles. Zebras become more combative when they are attacked by smaller predators. Either an aggressive plan of action or an escape path is predicted by the ZOA design.

$\int S_1 : z_{i,j} + R.(2r-1)$	(5)
$Z_{i,j}^{new,P2} = \left\{ (1 - \frac{t}{T}) . z_{i,j}, \qquad Ps \le 0.5; \right.$	
$S_2: z_{i,j} + r.(AX_j - I.z_{i,j}), else,$	
$Z = \int Z_i^{new, P2}, F_i^{new, P2} < F_i;$	(6)
$Z_i - \begin{bmatrix} Z_i, & else, \end{bmatrix}$	

In the first tactic, when lions attack zebras, the zebras abandon the region where they are placed to avoid the lion's onslaught. This strategy can be mathematically represented by the mode S1 in (5). When other predators attack one of the zebras in an attempt to scare and confound the predator by creating a protective structure, the other zebras in the herd migrate towards the attacking zebra in the second technique. Equation (5) uses the mode S2 to numerically represent the behavior of zebras. The positions of the zebras are updated, and if a zebra's new location has a higher value for the target function, it is approved. This updating condition is represented by equation (6).

One research gap in scalability and adaptability to complex optimisation situations is addressed by the Zebra Optimisation Algorithm (ZOA). A Chaotic Sinusoidal Map (CSM) is proposed as a way to improve the convergence properties and efficiency of the algorithm. This variant bridges the gap and provides feasible solutions for complex

optimisation situations by utilising the chaotic dynamics of the sinusoidal map. Further study is needed to completely understand how effectively the algorithm handles noisy and multimodal functions and how it influences efficient optimisation tactics.

3. PROPOSED CZOA METHOD

Chaos is a deterministic, random-like technique in nonlinear, non-periodic, non-converging, and limited dynamical systems. It uses chaotic variables, making it faster than stochastic searches. Chaos can generate repeatable and predictable sequences by changing its starting state, and is sensitive to changes in parameters and conditions. The complexity of the algorithm, the size of the optimisation problem, and the required computing speed are some of the criteria that determine the hardware requirements. A typical desktop or laptop computer with a multi-core CPU and enough RAM (8GB or more) should be suitable for smaller-scale issues. Resources for high-performance computing (HPC) may be required for situations that are more complex or computationally demanding. To spread the processing burden, this might involve cloud computing services, clusters, or even multi-core servers. Software Requirements: To implement optimisation algorithms, programming environments and libraries must be used. NumPy, SciPy, and DEAP (Distributed Evolutionary Algorithms in Python) are popular libraries for Python. For deep learning-based optimisations, you may also employ parallel computing frameworks like TensorFlow or PyTorch, or libraries like MPI (Message Passing Interface), depending on how complicated the implementation is.Furthermore, you may need libraries for chaotic dynamics and numerical simulations, such MATLAB or SciPy, if you're implementing the chaotic sinusoidal map.Since the Zebra Optimisation approach is largely a computational approach for optimisation, it may not require a database in its entirety.

Different chaotic maps are used in optimization, with the Sinusoidal chaotic map being the most commonly used. Fig 1 illustrates the PSEUDOCODE for the proposed CZOA method.

 $x_{k+1} = P \cdot x_k^2 \sin(\pi x_k)$

P = 2.3 is the control parameter

 $x_0 = 0.7$ which can be written as $x_{k+1} = \sin(\pi x_{k+1})$

```
PSEUDO code for the proposed CZOA
Initialize the CZOA parsmeters of T, no. of Zebras (N)
Initialize the position of zebras, and objective function
for t=1:T. update the PZ
for i=1:N
Phase 1: foraging activity
calculate the current i<sup>®</sup> using eqn (3)
upgrade the zebralocation using eqn(4)
phase 2: Defense strategies against predators
if Ps<0.5. Ps=rand
update Ps_variable with eqn (7) of chaotic sinusoidal map
strategy 1: exploration phase,
evaluate i<sup>#</sup> zebra utilising S<sub>1</sub> in eqn (5)
strategy 2: exploitation phase,
evaluate i 🏪 zebra utilising S 💡 in eqn (5)
end if
upgrade the i<sup>#</sup> zebra by utilising eqn (6)
upgrade and save the best available solution
```

Fig. 1 PSEUDOCODE fpr the proposed CZOA method

4. RESULTS AND DISCUSSIONS

The Chaotic Zebra optimization Algorithm (CZOA) is compared to different optimization algorithms (WSO, MPA, WOA, GWO, GSA, TLBO, and GA) across multiple unimodal, multimodal, and fixed-dimensional functions (mathematical modeling are presented in ref [17]) in the given tables 3, 4, and 5. This study provides insight into the performance of CZOA for each function in terms of mean, best, worst, standard deviation, and median values. Comparative Analysis of Unimodal Functions is shown in Table 3. CZOA consistently performs better than other methods in this table for all unimodal functions (F1 to F7). It delivers much reduced mean and best values, demonstrating the effectiveness of its optimization techniques. The consistency and dependability of CZOA in identifying the best solutions is shown by its continuously low standard deviations. A balanced trade-off between exploration and exploitation is maintained in Table 4's Multimodal Functions Comparative Analysis (F8 to F13).

Although it sometimes falls short of achieving the lowest values, its performance is consistently good for mean and best values. Its steady performance is shown by standard deviations, preventing it from being locked in local optima. Fixed-Dimensional Functions Comparative Analysis (F14 to F23) is shown in Table 5. CZOA's performance is comparatively inconsistent. It often attains competitive mean, best, and worst values, showing that it can manage optimization difficulties in these functions. The medians and standard deviations point to the stability and adaptability of CZOA. Overall, a variety of optimization situations show how flexible and effective CZOA is. Even while it may not always provide the greatest values, it is a promising option for a variety of optimization tasks, particularly in difficult and real-world situations, because to its consistency, stability, and capacity to identify competitive solutionsAuthor thanks In most cases, sponsor and financial support acknowledgments.

			Tab	le 3: Uni mod	al function	ns compara	tive analysis.	for develop	ed CZOA w	with others	
	F			CZO	W	MP	WO	GW	GS	TL	GA
				А	SO	A [37]	A [38]	O [39]	A [40]	BO [17]	[17]
					[36]						
			Mean	7.40	65.	1.9	1.40	1.7	1.3	2.5	30.
				E-250	84207	2E-49	E-151	7E-59	3E-16	2E-74	4715
			Best	6.8E-	5.2	3.8	9.30	1.4	5.3	5.8	17.
	F			257	89861	0E-52	E-171	9E-61	5E-17	6E-77	90903
1			Worst	3.7E-	23	1.6	2.70	7.7	3.7	2.5	56.
				249	8.6714	6E-48	E-150	1E-59	3E-16	9E-73	87106
			Std	0	58.	4.3	6.60	2.3	7.8	6.7	11.
					09538	3E-49	E-151	5E-59	8E-17	8E-74	51854
			Media	1.2E-	45.	4.1	2.20	1.0	1.1	1.6	28.
		n		254	37455	6E-50	E-159	7E-59	3E-16	9E-75	17077
			Mean	1.5E-	2.1	6.9	2.50	1.3	5.4	6.7	2.7
				131	377	6E-28	E-105	5E-34	8E-08	6E-39	85606
			Best	2.4E-	0.6	1.8	7.90	4.8	3.4	8.8	1.7
	F			136	61815	4E-29	E-118	7E-36	8E-08	1E-40	43611
2			Worst	7.3E-	7.4	4.7	2.70	7.9	1.2	2.4	3.8
				131	38052	0E-27	E-104	0E-34	3E-07	4E-38	0275
			Std	3.3E-	1.9	1.2	7.60	2.1	2.0	6.1	0.5
				131	53299	0E-27	E-105	6E-34	6E-08	4E-39	99756
			Media	7.2E-	1.5	3.5	3.40	6.5	5.1	4.9	2.7
		n		134	28931	1E-28	E-108	0E-35	2E-08	7E-39	38814
			Mean	1.5E-	17	2.5	19,9	2.1	475	3.8	216
				154	84.524	1E-12	39.26	7E-14	.0243	4E-24	6.814
			Best	5.3E-	10	6.1	2062	2.3	245	2.2	142
	F			169	39.407	8E-19	.816	5E-19	.7179	0E-29	2.763
3			Worst	7.4E-	35	1.4	34,6	4.0	118	3.6	345
				154	39.57	3E-11	53.75	4E-13	5.13	0E-23	5.476
			Std	3.3E-	69	4.8	9420	9.9	242	1.1	704
				154	1.1359	3E-12	.548	3E-14	.5098	9E-23	.235
			Media	6.9E-	15	1.8	20,3	4.6	399	4.0	209
		n		161	56.732	3E-13	03.94	6E-16	.9344	4E-26	8.599
			Mean	1.5E-	17.	2.9	51.7	1.2	1.2	1.8	2.8
				115	2787	8E-19	6951	3E-14	34645	3E-30	26566
			Best	1.3E-	11.	3.0	0.90	6.5	9.8	5.8	2.2
	F			119	90291	1E-20	3667	5E-16	9E-09	1E-32	14252
4			Worst	6.2E-	23.	9.6	91.6	5.7	4.9	8.1	3.9
				115	8119	0E-19	1802	3E-14	22767	1E-30	88745
			Std	2.7E-	3.1	2.5	32.6	1.6	1.5	2.6	0.5
				115	78756	2E-19	0275	1E-14	27107	4E-30	14049
			Media	2.2E-	17.	2.5	55.3	6.3	0.9	6.5	2.7
		n		116	75492	8E-19	6903	4E-15	06041	2E-31	80694
			Mean	28.50	10,	23.	27.2	26.	44.	26.	594
			-	581	798.6	39066	7239	57501	05585	76315	.789
	_		Best	27.67	13	22.	26.6	25.	25.	25.	228
_	F			914	45.963	78581	9534	54099	85872	5631	.5792
5			Worst	28.84	92,	24.	28.7	27.	167	28.	225
			a .	712	623.17	02522	0663	12889	.0769	72392	4.801
			Std	0.364	22.	0.4	0.63	0.5	48.	1.0	467

Media 28.61 56 23. 27.0 26. 26. 26. 26. 26. 26. 26. 26. 27.64 5008 5008 5005 20152 2075 34. 34. 20309 20152 2075 31.33 11331 11331 6 184 93604 7E-10 051 46482 2E-17. 32888 59683 62. 70425 70425 70425 70425 70425 70425 70425 70425 70425 70425 70425 70425 70425 70425 70425 70417 716 7057 941 51108 31-79 8003 70.7 9.4 1.2 31.7 716 70576 26589 715-17 716208 6003 0.0	_					386	093	.25	27845	6008	79436	79555	30818	.867
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Me	edia	28.6	51	56	23.	27.0	26.	26.	26	. 475
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				n		329	04.)85	27164	5974	20545	32007	30152	.0975
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Me	ean	2.65	58	10	1.8	0.08	0.6	1.0	1.2	2 34.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						348	0.8)59	0E-09	1492	60188	5E-16	60143	11331
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Be	st	2.46	56	16.	8.0	0.01	0.2	5.5	0.2	15.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			F			184	936	04	7E-10	051	46482	2E-17	32888	59683
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6		We	orst	3.34	9	38	4.8	0.32	1.2	1.8	2.1	. 62.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						47	2.1	118	0E-09	6421	51026	1E-16	62628	70425
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Sto	1	0.38	36	10	1.0	0.11	0.3	4.0	0.5	<i>i</i> 14.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						941	5.1	108	3E-09	1874	37545	8E-17	47394	91716
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Me	edia	2.48	38	69.	1.6	0.03	0.7	9.4	1.2	. 31.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				n		193	506	95	0E-09	1576	26589	7E-17	16208	6505
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Me	ean	8.7E	3-	9.0	0.0	0.00	0.0	0.0	0.0) 0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-		05	0E-	-05	00546	1277	0083	52756	01528	10578
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	Be	st	4.13	3 (T	1.0	0.0	2.02	0.0	0.0	9.0) 0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	F			E-05	6E-	-05	00111	E-05	00182	1411	0E-05	03029
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1		W	orst	0.00	00	0.0	0.0	0.00	0.0	0.0	0.0) 0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C to	1	149	, 003	39	00898	5394	01955	954/9	02944	21917
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Sic	1	5.87 E 05	5E-	9.8 -05	0.0	1501	0.0	0.0	0.0	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	M	dia	E-03	JE-	-05 62	00230	1391	00314	2/4/0	00908	03303
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				n	Sula	0.21 E 05	- 7E-	-05	0.0	0.00	0.0	5178	01505	10168
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	Та	bla	II A.Uni N	(1.1.1.t.i	L-05	/L	mode	1 functio		vo opolucio	for davalor	od C70A r	with others
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			bie	4.0m, N	iuiti,			moua		wo				CA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Г			٨	CZO	so w	٨	MP [37]	WU A [38]	0 [20]	4 [40]	IL BO [17]	GA [17]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Л		[36]	Л	[37]	A [30]	0[39]	A [40]		[1/]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Mean		_	[30]		_	_	_	_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Wieum	56	88.03	70567	96	590.26	11 066 5	6086.06	2790 97	5605 29	8425 58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							3		.20	11,000.0	0000.00	2190.91	0000.27	0120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		F		Best		-	_		_	_	_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8				64	05.6	9003.9	10),477.6	12,569.5	6868.8	3983.07	7033.72	9684.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							8		,	,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Worst		-	_		_	_	-	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					51	59.01	6088.8	90)94.02	7744.88	5055.53	2158.1	4558.05	7034.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							3							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Std		457.5	80		407	1910	530	545	670	705
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					48	5	8.5881	.5	597	.15	.3933	.6289	.6257	.9341
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Media	ι	-	_		-	—	-	_	-	—
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			n		56	67.11	6978.3	97	122.23	12,041.4	6079.35	2702.87	5620.58	8403.34
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				14		0	1		0	0	1 7	20	0	F A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Mean		0	24	•	0	0	I./	28.	0	54.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Dest		0	00552		0	0	0E-14	47705	0	02055
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Б		Dest		0	60502	•	0	0	0	15.	0	23. 20016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	Г		Worst		0	00502		0	0	11	/18	0	20910
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			w or st		0	90/66	•	0	0	4E-13	40. 7042	0	70. 82396
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Std		0	90 + 00	1	0	0	35	10	0	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Sta		0	87691	т	0	0	7E-14	09094	0	20074
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Media	L	0	2.2		0	0	0	26	0	52.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			n	mound	•	0	66603	•	Ū	0	0	34004	Ū	56182
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Mean		8.88	5.2	2	4.2	4.08	1.6	8.2	4.4	3.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					E-	16	86092	61	E-15	E-15	7E-14	0E-09	4E-15	71525
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Best		8.88	3.	3	8.8	8.88	7.9	4.6	4.4	2.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F			E-	16	79557	81	E-16	E-16	9E-15	6E-09	4E-15	7908
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10			Worst		8.88	8.	l	4.4	7.99	2.2	1.4	4.4	4.6
Std 0 1.3 8.7 2.51 3.9 2.5 8.9 0.4 44712 5E-16 E-15 1E-15 7E-09 2E-31 36664					E-	16	90507	4]	E-15	E-15	2E-14	4E-08	4E-15	37325
44712 5E-16 E-15 1E-15 7E-09 2E-31 36664				Std		0	1.	3	8.7	2.51	3.9	2.5	8.9	0.4
							44712	51	E-16	E-15	1E-15	7E-09	2E-31	36664

			Media	8 88	5.1	4.4	4.44	15	77	4.4	3.6
			Wicula	0.00 E 16	74200	4E 15	 E 15	1E 14	2E 00	4E 15	25051
		n		E-10	/4299	4E-15	E-15	1E-14	2E-09	4E-15	25951
			Mean	0	1.7	0	0	0.0	7.2	0	1.4
					14441			01338	00806		71998
			Best	0	1.1	0	0	0	2.9	0	1.2
	F				02774				92647		86807
11	1		Worst	0	30	0	0	0.0	12017	0	17
11			worst	0	5.2	0	0	0.0	12.	0	1.7
				_	81444	_	_	18805	62514	_	24133
			Std	0	0.5	0	0	0.0	2.9	0	0.1
					97359			04936	9544		36367
			Media	0	1.5	0	0	0	7.3	0	1.4
		n			99383				03819		46261
			Moon	0.124	30	2.0	0.02	0.0	0.2	0.0	0.2
			wican	274	5.2	2.0	0.02	20920	0.2	71259	7462
			D	3/4	00433	3E-10	0076	39839	09827	/1258	/462
			Best	0.048	0.9	5.1	0.00	0.0	4.7	0.0	0.0
	F			216	52182	8E-11	1225	1255	4E-19	24086	6078
12			Worst	0.168	7.3	3.8	0.13	0.0	0.9	0.1	0.6
				906	81298	1E-10	6764	86697	30839	35	50191
			Std	0.047	2.0	1.0	0.04	0.0	03	0.0	0.1
			bia	607	12008	6E-10	4029	22485	29426	22064	52627
				0.127	13998	01-10	4038	23463	36430	23004	52037
			Media	0.137	2.8	2.0	0.00	0.0	0.0	0.0	0.2
		n		136	89094	5E-10	5778	37873	80118	68621	64159
			Mean	2.155	35	0.0	0.21	0.5	0.0	1.1	2.7
				481	96.082	02496	439	13307	56604	00895	05127
			Best	1 883	13	99	0.03	46	46	0.5	12
	F		2000	766	78381	4E - 10	7166	8E-05	5E-18	87003	90667
12	1.		Want	2 200	/0501	4L 10	/100		JE 10	15	20
15			worst	2.290	62,	0.0	0.09	0.9	0.9	1.5	3.9
				359	099.16	25288	9644	4917	57417	39663	3629
			Std	0.158	15,	0.0	0.20	0.2	0.2	0.2	0.8
				002	251.83	06984	2038	83844	35205	54715	30601
	-		Media	2.217	44.	2.8	0.16	0.5	1.7	1.1	2.8
	-	n	Media	2.217	44. 18622	2.8 2E-09	0.16 5632	0.5 16634	1.7 8E-17	1.1 13503	2.8 64354
	-	n	Media	2.217 29	44. 18622	2.8 2E-09	0.16 5632	0.5 16634	1.7 8E-17	1.1 13503	2.8 64354
	T .1	n	Media	2.217 29	44. 18622	2.8 2E-09	0.16 5632	0.5 16634	1.7 8E-17	1.1 13503	2.8 64354
	Tal	n ble 5:	Media Uni, M	2.217 29 ulti, high din	44. 18622 nensional r	2.8 2E-09 nodal funct	0.16 5632 ions compara	0.5 16634 ative analys	$\begin{array}{c} 1.7\\ 8E-17 \end{array}$	1.1 13503 oped CZOA	2.8 64354 with others
	Tal F	n ble 5:	Media Uni, M	2.217 29 ulti, high din CZO	44. 18622 nensional r W	2.8 2E-09 nodal funct MP	0.16 5632 ions compara WO	0.5 16634 ative analys GW	1.7 8E-17 is for develo GS	1.1 13503 oped CZOA TL	2.8 64354 with others GA
	Tal F	n ble 5:	Media Uni, M	2.217 29 ulti, high din CZO A	44. 18622 nensional r W SO	2.8 2E-09 nodal funct MP A [37]	0.16 5632 ions compara WO A [38]	0.5 16634 ative analys GW O [39]	1.7 8E-17 is for develo GS A [40]	1.1 13503 pped CZOA TL BO [17]	2.8 64354 .with others GA [17]
	Tal F	n ble 5:	Media Uni, M	2.217 29 ulti, high din CZO A	44. 18622 nensional r W SO [36]	2.8 2E-09 modal funct MP A [37]	0.16 5632 ions compara WO A [38]	0.5 16634 ative analys GW O [39]	1.7 8E-17 is for develo GS A [40]	1.1 13503 oped CZOA TL BO [17]	2.8 64354 with others GA [17]
	Tal F	n ble 5:	Media Uni, M Mea	2.217 29 ulti, high din CZO A	44. 18622 nensional r W SO [36] 1.0	2.8 2E-09 modal funct MP A [37]	0.16 5632 ions compara WO A [38] 2.56	0.5 16634 ative analys: GW O [39] 3.6	1.7 8E-17 is for develo GS A [40]	1.1 13503 oped CZOA TL BO [17]	2.8 64354 with others GA [17]
	Tal F	n ble 5:	Media Uni, M Mea	2.217 29 ulti, high din CZO A 1.59	44. 18622 hensional r W SO [36] 1.0 97319	2.8 2E-09 modal funct MP A [37] 1.0 09791	0.16 5632 ions compara WO A [38] 2.56 8192	0.5 16634 ative analys: GW O [39] 3.6 92491	1.7 8E-17 is for develo GS A [40] 3.5 58763	1.1 13503 pped CZOA TL BO [17] 0.9 98017	2.8 64354 . with others GA [17] 1.0 48628
	Tal F	n ble 5: n	Media Uni, M Mea	2.217 29 ulti, high dim CZO A 1.59 442 0.00	44. 18622 hensional r W SO [36] 1.0 97319	2.8 2E-09 modal funct MP A [37] 1.0 09791	0.16 5632 ions compara WO A [38] 2.56 8192 0.00	0.5 16634 ative analys: GW O [39] 3.6 92491 0.0	1.7 8E-17 is for develo GS A [40] 3.5 58763 0.0	1.1 13503 Deped CZOA TL BO [17] 0.9 98017 0.0	2.8 64354 . with others GA [17] 1.0 48628 0.0
	Tal F	n ble 5: n	Media Uni, M Mea Best	2.217 29 ulti, high dim CZO A 1.59 442 0.99	44. 18622 hensional r W SO [36] 1.0 97319 0.9 0.9	2.8 2E-09 modal funct MP A [37] 1.0 09791 0.9	0.16 5632 ions compara WO A [38] 2.56 8192 0.99	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9	$ \begin{array}{r} 1.7 \\ 8E - 17 \\ \overline{ 35} \\ A [40] \\ \overline{ 3.5} \\ 58763 \\ 0.9 \\ $	1.1 13503 Deped CZOA TL BO [17] 0.9 98017 0.9	2.8 64354 . with others GA [17] 1.0 48628 0.9
	Tal F F1	n ble 5: n	Media Uni, M Mea Best	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004	2.8 2E-09 modal funct MP A [37] 1.0 09791 0.9 98004	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004	1.7 8E-17 is for develo GS A [40] 3.5 58763 0.9 98004	1.1 13503 Deped CZOA TL BO [17] 0.9 98017 0.9 98004	2.8 64354 with others GA [17] 1.0 48628 0.9 98004
4	Tal F F1	n ble 5: n	Media Uni, M Mea Best Wor	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9	2.8 2E-09 modal funct MP A [37] 1.0 09791 0.9 98004 1.2	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10.	1.7 8E-17 is for develor GS A [40] 3.5 58763 0.9 98004 11.	1.1 13503 Deped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9
4	Tal F	n ble 5: n	Media Uni, M Mea Best Wor	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037	2.8 2E-09 modal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342	1.7 8E-17 is for develo GS A [40] 3.5 58763 0.9 98004 11. 85901	1.1 13503 Deped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239	2.8 64354 . with others GA [17] 1.0 48628 0.9 98004 1.9 91043
4	Tal F	n ble 5: n st	Media Uni, M Mea Best Wor Std	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54	44. 18622 mensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1	1.7 8E-17 is for develor GS A [40] 3.5 58763 0.9 98004 11. 85901 3.0	1.1 13503 Deped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98004 0.9 98239 5.7	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2
4	Tal F	n ble 5: n st	Media Uni, M Mea Best Wor Std	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423	1.7 8E-17 is for develo GS A [40] 3.5 58763 0.9 98004 11. 85901 3.0 31942	1.1 13503 pped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05	2.8 64354 . with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469
4	Tal F	n ble 5: n st	Media Uni, M Mea Best Wor Std Med	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2 9	1.7 8E-17 is for develo GS A [40] 3.5 58763 0.9 98004 11. 85901 3.0 31942 2 8	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9	2.8 64354 . with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9
4	Tal F	n ble 5: n st	Media Uni, M Mea Best Wor Std Med	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121	1.7 8E-17 is for develor GS A [40] 3.5 58763 0.9 98004 11. 85901 3.0 31942 2.8 80812	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 90004
4	Tal F	n ble 5: n st iar	Media Uni, M Mea Best Wor Std Med	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.54	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.99	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121	1.7 8E-17 is for develo GS A [40] 3.5 58763 0.9 98004 11. 85901 3.0 31942 2.8 89812	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004	2.8 64354 . with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004
4	Tal F	n ble 5: n st iar	Media Uni, M Mea Best Wor Std Med Mea	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.00	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.9 98004 0.9	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.99	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0	$ \begin{array}{r} 1.7 \\ 8E-17 \\ \hline 8E-17 \\ \hline s for develop \\ \hline GS \\ A [40] \\ \hline 3.5 \\ 58763 \\ 0.9 \\ 98004 \\ 11. \\ 85901 \\ 3.0 \\ 31942 \\ 2.8 \\ 89812 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{array} $	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004 0.0	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0
4	Tal F	n ble 5: n st iar n	Media Uni, M Mea Best Wor Std Med Mea	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.54 4451 1.99 2031 0.00 0308	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 91037 0.3 36821 0.9 98004 0.9 91037 0.3 36821 0.9 98004 0.9 98004 0.3 36821 0.9 98004 0.9 98004 0.3 36821 0.9 98004 0.9 98004 0.3 36821 0.9 98004 0.9 98004 0.3 36821 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.3 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98004 0.9 98005 0.3 36821 0.9 98004 0.9 98004 0.9 98005 0.9 98005 0.9 98005 0.3 36821 0.9 98005 0.9 98005 0.9 98005 0.9 98005 0.9 98005 0.3 36821 0.9 98005 0.9 0.9 98005 0.9 0.9 98005 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 98004 0.0 01207	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.99 8004 0.99 8004 0.99	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363	$ \begin{array}{r} 1.7 \\ 8E-17 \\ \hline 8E-17 \\ \hline s for develop \\ \hline GS \\ A [40] \\ \hline 3.5 \\ 58763 \\ 0.9 \\ 98004 \\ 11. \\ 85901 \\ 3.0 \\ 31942 \\ 2.8 \\ 89812 \\ 0.0 \\ 02351 \\ \end{array} $	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004 0.0 98004 0.0 00595	2.8 64354 . with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374
4	Tal F	n ble 5: n st iar n	Media Uni, M Mea Best Wor Std Med Mea Best	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.9 98004 0.9 98004 0.0 01357 0.0	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.09 8004 0.00 0809 0.00	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0	$ \begin{array}{r} 1.7 \\ 8E-17 \\ \hline \text{is for develop} \\ \hline \text{GS} \\ A [40] \\ \hline 3.5 \\ 58763 \\ 0.9 \\ 98004 \\ 11. \\ 85901 \\ 3.0 \\ 31942 \\ 2.8 \\ 89812 \\ 0.0 \\ 02351 \\ 0.0 \\ \end{array} $	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004 0.0 98004 0.0 00595 0.0	2.8 64354 . with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0
4	Tal F F1	n ble 5: n st iar n	Media Uni, M Mea Best Wor Std Med Mea Best	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0307	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.9 98004 0.9 98004 0.0 01357 0.0 00307	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 00309	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308	$ \begin{array}{r} 1.7 \\ 8E-17 \\ \hline \text{is for develop} \\ \hline \text{GS} \\ A [40] \\ \hline 3.5 \\ 58763 \\ 0.9 \\ 98004 \\ 11. \\ 85901 \\ 3.0 \\ 31942 \\ 2.8 \\ 89812 \\ 0.0 \\ 02351 \\ 0.0 \\ 00886 \\ \end{array} $	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004 0.0 98004 0.0 98004 0.0 00595 0.0 00311	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783
4	Tal F F1	n ble 5: n st iar n	Media Uni, M Mea Best Wor Std Med Mea Best Wor	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0307 0.00	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 00309 0.0	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308 0.0	$ \begin{array}{r} 1.7 \\ 8E-17 \\ \hline \text{is for develop} \\ \hline \text{GS} \\ A [40] \\ \hline 3.5 \\ 58763 \\ 0.9 \\ 98004 \\ 11. \\ 85901 \\ 3.0 \\ 31942 \\ 2.8 \\ 89812 \\ 0.0 \\ 02351 \\ 0.0 \\ 00886 \\ 0.0 \\ \end{array} $	$\begin{array}{c} 1.1 \\ 13503 \\ \hline \\ \hline \\ pped CZOA \\ \hline \\ TL \\ BO [17] \\ \hline \\ 0.9 \\ 98017 \\ 0.9 \\ 98004 \\ 0.9 \\ 98239 \\ 5.7 \\ 9E-05 \\ 0.9 \\ 98004 \\ 0.0 \\ 00595 \\ 0.0 \\ 00595 \\ 0.0 \\ 00311 \\ 0.0 \\ \end{array}$	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783 0.0
4	Tal F F1	n ble 5: n st ian n	Media Uni, M Mea Best Wor Std Med Mea Best Wor	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0309	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345	2.8 2E-09 modal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 00309 0.0 01674	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00 2251	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308 0.0 20345	$ \begin{array}{r} 1.7 \\ 8E-17 \\ \hline \text{is for develop} \\ \hline \text{GS} \\ A [40] \\ \hline 3.5 \\ 58763 \\ 0.9 \\ 98004 \\ 11. \\ 85901 \\ 3.0 \\ 31942 \\ 2.8 \\ 89812 \\ 0.0 \\ 02351 \\ 0.0 \\ 00886 \\ 0.0 \\ 06954 \\ \end{array} $	1.1 13503 pped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004 0.0 98004 0.0 00595 0.0 00311 0.0 0125	2.8 64354 . with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783 0.0 66852
4	Tal F F1	n ble 5: n st ian n st	Media Uni, M Mea Best Wor Std Med Mea Best Wor	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0309 (21	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345 0.0	2.8 2E-09 modal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 01207 0.0 00309 0.0 01674	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00 2251 0.00	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308 0.0 20345 0.0	$ \begin{array}{r} 1.7 \\ 8E-17 \\ \hline \text{is for develop} \\ \hline \text{GS} \\ A [40] \\ \hline 3.5 \\ 58763 \\ 0.9 \\ 98004 \\ 11. \\ 85901 \\ 3.0 \\ 31942 \\ 2.8 \\ 89812 \\ 0.0 \\ 02351 \\ 0.0 \\ 02351 \\ 0.0 \\ 00886 \\ 0.0 \\ 06954 \\ 0.0 \\ 06954 \\ 0.0 \\ 000886 \\ 0.0 \\ 06954 \\ 0.0 \\ $	1.1 13503 pped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004 0.0 98004 0.0 00595 0.0 00311 0.0 0125 0.0	2.8 64354 GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783 0.0 66852 0.0
4	Tal F F1	n ble 5: n st ian n st	Media Uni, M Mea Best Wor Std Med Mea Best Wor Std	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0309 6.31	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345 0.0 0402	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 01207 0.0 00309 0.0 01674 0.0	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00 2251 0.00 05111	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308 0.0 20345 0.0 00005	$ \begin{array}{r} 1.7 \\ 8E-17 \\ \hline \text{is for develop} \\ \hline \text{GS} \\ A [40] \\ \hline 3.5 \\ 58763 \\ 0.9 \\ 98004 \\ 11. \\ 85901 \\ 3.0 \\ 31942 \\ 2.8 \\ 89812 \\ 0.0 \\ 02351 \\ 0.0 \\ 02351 \\ 0.0 \\ 00886 \\ 0.0 \\ 06954 \\ 0.0 \\ 01525 \\ \end{array} $	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004 0.0 98004 0.0 00595 0.0 00311 0.0 0125 0.0 00115	2.8 64354 GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783 0.0 66852 0.0
4	Tal F F1	n ble 5: n st ian n st	Media Uni, M Mea Best Wor Std Med Mea Best Wor Std	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0309 6.31 E-07	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345 0.0 0493	$\begin{array}{r} 2.8\\ \underline{2E-09}\\ \hline \\ \hline \\ \underline{NP}\\ A [37]\\ \hline \\ 1.0\\ 09791\\ 0.9\\ 98004\\ 1.2\\ 33486\\ 0.0\\ 58023\\ 0.9\\ 98004\\ 0.0\\ 58023\\ 0.9\\ 98004\\ 0.0\\ 01207\\ 0.0\\ 01207\\ 0.0\\ 00309\\ 0.0\\ 01674\\ 0.0\\ 00603\\ \end{array}$	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00 02251 0.00 0541	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308 0.0 20345 0.0 08068	$\begin{array}{c} 1.7\\ 8E-17\\ \hline 8E-17\\ \hline 8E-17\\ \hline 8E-17\\ \hline 8E-17\\ \hline 8E-17\\ \hline 8S\\ A [40]\\ \hline 3.5\\ 58763\\ 0.9\\ 98004\\ 11.\\ 85901\\ 3.0\\ 31942\\ 2.8\\ 89812\\ 0.0\\ 31942\\ 2.8\\ 89812\\ 0.0\\ 02351\\ 0.0\\ 00886\\ 0.0\\ 00886\\ 0.0\\ 06954\\ 0.0\\ 01506\\ \end{array}$	$\begin{array}{c} 1.1 \\ 13503 \\ \hline \\ $	2.8 64354 GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783 0.0 66852 0.0 17858
4	Tal F F1	n ble 5: n st ian n st	Media Uni, M Mea Best Wor Std Mea Best Wor Std Med	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0307 0.00 0309 6.31 E-07 0.00	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345 0.0 0493 0.0	$\begin{array}{r} 2.8\\ \underline{2E-09}\\ \hline \\ \hline \\ \hline \\ nodal funct\\ \hline \\ MP\\ A [37]\\ \hline \\ 1.0\\ 09791\\ 0.9\\ 98004\\ 1.2\\ 33486\\ 0.0\\ 58023\\ 0.9\\ 98004\\ 0.0\\ 58023\\ 0.9\\ 98004\\ 0.0\\ 01207\\ 0.0\\ 01207\\ 0.0\\ 00309\\ 0.0\\ 01674\\ 0.0\\ 00603\\ 0.0\\ \end{array}$	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00 02251 0.00 0541 0.00	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 03363 0.0 03363 0.0 00308 0.0 20345 0.0 08068 0.0	$\begin{array}{c} 1.7\\ 8E-17\\ \hline 8S\\ 10\\ 3.5\\ 58763\\ 0.9\\ 98004\\ 11.\\ 85901\\ 3.0\\ 31942\\ 2.8\\ 89812\\ 0.0\\ 31942\\ 2.8\\ 89812\\ 0.0\\ 02351\\ 0.0\\ 00886\\ 0.0\\ 00886\\ 0.0\\ 006954\\ 0.0\\ 01506\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 1.1 \\ 13503 \\ \hline \\ $	$\begin{array}{c} 2.8 \\ 64354 \\ \hline \\ 0.9 \\ 98004 \\ 0.9 \\ 98004 \\ 0.0 \\ 15374 \\ 0.0 \\ 00783 \\ 0.0 \\ 66852 \\ 0.0 \\ 17858 \\ 0.0 \\ \hline \\ 0.0 \\ 0.0 \\ \hline \\ 0.0$
4	Tal F F1	n ble 5: n st ian st	Media Uni, M Mea Best Wor Std Mea Best Wor Std Std Mea	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0307 0.00 0309 6.31 E-07 0.00 0308	44. 18622 nensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345 0.0 0493 0.0 00309	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 00309 0.0 01674 0.0 00603 0.0 016	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00 02251 0.00 0541 0.00 0541 0.00 0686	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308 0.0 20345 0.0 08068 0.0 00309	$\begin{array}{c} 1.7\\ 8E-17\\ \hline 8S\\ 10\\ \hline 8S\\ 10\\ 3.5\\ 58763\\ 0.9\\ 98004\\ 11.\\ 85901\\ 3.0\\ 31942\\ 2.8\\ 89812\\ 0.0\\ 31942\\ 2.8\\ 89812\\ 0.0\\ 02351\\ 0.0\\ 00886\\ 0.0\\ 00886\\ 0.0\\ 006954\\ 0.0\\ 006954\\ 0.0\\ 01506\\ 0.0\\ 02169\\ \end{array}$	$\begin{array}{c} 1.1 \\ 13503 \\ \hline \\ $	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783 0.0 66852 0.0 17858 0.0 17858 0.0 1426
4	Tal F F1	n ble 5: n st ian st ian	Media Uni, M Mea Best Wor Std Mea Best Wor Std Mea A Mea	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0309 6.31 E-07 0.00 0308 -	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345 0.0 0493 0.0 00309 -	2.8 2E-09 nodal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 00309 0.0 01674 0.0 00603 0.0 016 -	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00 02251 0.00 0541 0.00 0541 0.00 0686 -	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 03363 0.0 00308 0.0 20345 0.0 08068 0.0 00309 -	$\begin{array}{c} 1.7\\ 8E-17\\ \hline 8S\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	1.1 13503 oped CZOA TL BO [17] 0.9 98017 0.9 98004 0.9 98239 5.7 9E-05 0.9 98004 0.0 98204 0.9 98004 0.0 00595 0.0 00311 0.0 00442 0.0 00326 	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783 0.0 66852 0.0 17858 0.0 17858 0.0 1426
4	Tal F F1	n ble 5: n st iai n st iai	Media Uni, M Mea Best Wor Std Mea Best Wor Std Mea h	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0307 0.00 0309 6.31 E-07 0.00 0308 1.03163	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345 0.0 0493 0.0 00309 - 1.0316	2.8 2E-09 modal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 00309 0.0 01674 0.0 00603 0.0 016 - 1.02929	$\begin{array}{r} 0.16\\ \underline{5632}\\ \hline \\ \hline$	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308 0.0 20345 0.0 08068 0.0 00309 - 1.03163	$ \begin{array}{r} 1.7 \\ \underline{8E-17} \\ \hline 1.7 \\ \underline{85} \\ 1.7 \\ 1.7 \\ \underline{85} \\ 1.7 \\ 1.$	$\begin{array}{c} 1.1 \\ 13503 \\ \hline \\ $	2.8 64354 with others GA [17] 1.0 48628 0.9 98004 1.9 91043 0.2 44469 0.9 98004 0.0 15374 0.0 00783 0.0 66852 0.0 17858 0.0 17858 0.0 1426
4	Tal F F1	n ble 5: n st iai n st iai n	Media Uni, M Mea Best Wor Std Mea Best Wor Std Mea h	2.217 29 ulti, high dim CZO A 1.59 442 0.99 8004 1.99 2031 0.54 4451 1.99 2031 0.00 0308 0.00 0307 0.00 0309 6.31 E-07 0.00 0308 1.03163	44. 18622 hensional r W SO [36] 1.0 97319 0.9 98004 1.9 91037 0.3 36821 0.9 98004 0.0 01357 0.0 00307 0.0 20345 0.0 00309 - 1.0316 3	2.8 2E-09 modal funct MP A [37] 1.0 09791 0.9 98004 1.2 33486 0.0 58023 0.9 98004 0.0 58023 0.9 98004 0.0 01207 0.0 01207 0.0 00309 0.0 01674 0.0 00603 0.0 016 - 1.02929	0.16 5632 ions compara WO A [38] 2.56 8192 0.99 8004 10.7 5342 3.24 3534 0.99 8004 0.00 0809 0.00 0312 0.00 02251 0.00 0541 0.00 0541 0.00 0541 0.00 0686 - 1.03163	0.5 16634 ative analys: GW O [39] 3.6 92491 0.9 98004 10. 75342 4.1 07423 2.9 80121 0.0 03363 0.0 00308 0.0 20345 0.0 08068 0.0 00309 - 1.03163	$\begin{array}{c} 1.7\\ 8E-17\\ \hline 8S\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 1.1 \\ 13503 \\ \hline \\ $	$\begin{array}{r} 2.8 \\ 64354 \\ \hline \\ 0.9 \\ 98004 \\ \hline \\ 0.9 \\ 98004 \\ \hline \\ 0.2 \\ 44469 \\ \hline \\ 0.9 \\ 98004 \\ \hline \\ 0.2 \\ 44469 \\ \hline \\ 0.9 \\ 98004 \\ \hline \\ 0.0 \\ 15374 \\ \hline \\ 0.0 \\ 15374 \\ \hline \\ 0.0 \\ 00783 \\ \hline \\ 0.0 \\ 15374 \\ \hline \\ 0.0 \\ 17858 \\ \hline \\ 0.0 \\ 1426 \\ \hline \\ 1.03162 \end{array}$

	F 1		D (
6	FI		Best	- 1 03163	1 0316	-	-	-	-	-	1 03163
0				1.05105	3	1.05105	1.05105	1.05105	1.05105	1.05105	1.05105
			Wor	-	_	_	_	_	_	_	_
		st		1.03163	1.0316	1.00093	1.0316	1.0316	1.0316	1.0316	1.0316
			Std	8.13	7.6	0.0	7.61	7.6	7.6	7.7	8.7
			14.1	E-11	3E-06	0761	E-06	1E-06	1E-06	3E-06	9E-06
		ion	Med	-	-	-	-	-	-	-	-
		lan		1.05105	1.0510	1.0510	1.05105	1.05105	1.05105	1.05105	1.05105
			Mea	0.39	0.3	0.3	0.39	0.3	0.3	0.3	0.4
		n		7887	97888	98401	7888	97889	97888	9796	65955
			Best	0.39	0.3	0.3	0.39	0.3	0.3	0.3	0.3
	F1			7887	97887	97887	7887	97887	97887	97892	97887
7			Wor	0.39	0.3	0.4	0.39	0.3	0.3	0.3	1.7
		st	C+d	2 95	97891	01154	1 20	97891	9/891	98172	50826
			Sia	2.8E	2E-06	0.0	1.29 F-06	1.5 8E-06	1.0 5E-06	7.4 3E-05	0.5 33276
			Med	0.39	0.3	0.3	0.39	0.3	0.3	0.3	0.3
		ian		7887	97887	97974	7888	97888	97887	97949	97907
			Mea	3.00	3.0	6.1	3.00	3.0	3.0	3.0	7.3
		n		0005	03162	61661	3188	03175	03162	03163	01761
	F 1		Best	3	3.0	3.0	3.00	3.0	3.0	3.0	3.0
0	FI		Wor	2.00	2.0	13933	2 02	2.0	2.0	2.0	00042
0		ct	wor	0015	5.0 27001	50. 00128	5.02 7003	5.0 27013	5.0 27001	27004	01828
		51	Std	6.78	7.0	7.0	7.00	7.0	7.0	7.0	11.
				E-06	1E-03	07912	Е-03	1E-03	1E-03	1E-03	60624
			Med	3	3.0	3.5	3.00	3.0	3.0	3.0	3.0
		ian			00564	63655	0572	00586	00564	00564	03009
			Mea	-	-	-	-	-	-	-	-
		n		3.86229	3.8626	3.72483	3.86029	3.86112	3.86264	3.86154	3.86248
	F1		Best	_	4	_	_	_	_	_	_
9	11		Dest	3.86269	3.8627	3.86278	3.86276	3.86278	3.86278	3.86268	3.86278
-					8						
			Wor	-	_	_	_	_	_	_	_
		st		3.8615	3.8622	3.2931	3.85473	3.85493	3.86221	3.85487	3.86165
			0.1	0.00	1	0.1	0.00	0.0	1.7	0.0	0.0
			Std	0.00	1.5 1E_04	0.1 51444	0.00	0.0	1.5 1E_04	0.0	0.0
			Med	- 0403	112-04	-	5100	02805	112-04	02312	00418
		ian	Wied	3.86233	3.8626	3.72574	3.86162	3.86258	3.86265	3.86219	3.86261
					5						
			Mea	-	_	_	-	_	_	_	-
		n		3.32148	3.3033	2.53258	3.24918	3.2583	3.32121	3.24203	3.2276
	F 2				9						
0	F2		Best	-	2 2210	2 22482	-	-	2 2210	-	2 22071
0			Wor	-	5.5219	-	-	5.52109	5.5219	-	5.52071
		st	1101	3.31953	3.2023	1.78365	3.08873	3.08302	3.32046	3.01276	2.99698
					8						
			Std	0.00	0.0	0.3	0.09	0.0	3.7	0.0	0.0
				109	47927	7135	2315	83885	1E-04	88403	85962
			Med	-	-	-	-	-	-	-	-
		ıan		3.32196	3.3212	2.58954	3.31743	3.3206	3.32126	3.29115	3.23604
			Mea	_	۷	_	_	_	_	_	_
		n	11100	8.11394	8.4056	7.55876	9.3836	9.38852	7.19449	6.85344	6.26153
					6		*				

	F2		Best	-	_	_	_	_	_	_	_
1				10.1532	10.153	10.1515	10.1525	10.153	10.1532	9.41091	9.7366
			Wor		1						
		ot	wor	-	- 26852	- 5 0552	5 0555	-	-	2 24722	- 2 20015
		sı		5.0552	2.0852 3	5.0552	5.0555	5.05878	2.08323	5.24755	2.30043
			Std	2.79	3.4	2.2	2.05	2.0	3.8	2.2	2.9
				2235	61007	61818	4666	49661	07097	86936	85975
			Med	-	—	_	—	—	—	_	_
		ian		10.153	10.150 1	7.90122	10.1478	10.1495	10.1481	7.31253	7.0612
			Mea	-	_	_	_	_	_	_	_
		n		10.4029	10.018 5	8.0897	8.1085	10.4001	10.1272	7.94995	7.37259
	F2		Best	-	_	_	_	_	_	_	_
2				10.4029	10.402 9	10.4005	10.4025	10.4027	10.4029	10.0595	9.98289
			Wor	-	_	_	_	_	_	_	_
		st		10.4029	2.7592 8	5.08767	1.84121	10.3962	4.93328	4.05144	2.67923
			Std	9.43	1.8	2.3	3.35	0.0	1.3	1.8	2.1
				E-06	82915	06028	9301	02406	47229	42456	10814
			Med	-	_	_	_	_	_	_	_
		ian		10.4029	10.400 4	9.04577	10.3939	10.4011	10.4008	8.38282	7.86286
	F2		Mea	-	_	_	_	_	_	_	_
3		n		10.5362	10.535	9.15341	8.58402	10.5346	10.2862	8.08721	6.36296
			Best	-	_	_	_	_	_	_	_
				10.5364	10.536 3	10.4492	10.5357	10.5361	10.5363	9.69136	10.1794
			Wor	_	-	_	_	_	_	_	_
		st		10.5357	10.531	5.12848	1.68387	10.5306	5.55955	4.27265	2.38964
			Std	0.00	1.6	1.6	3.59	0.0	1.2	1.8	2.8
				0319	2E-03	2432	1775	01644	26031	2832	71335
			Med	-	_	_	_	_	_	_	_
		ian		10.5364	10.535 4	9.54713	10.5331	10.5349	10.5354	8.68008	6.89094

The ZOA was improved by the addition of the Chaotic Sinusoidal Map (CSM), leading to the creation of the innovative and potent CZOA optimization method. CZOA has shown via thorough testing on a set of 23 benchmark functions that it can successfully balance exploration and exploitation, surpassing both the original ZOA and numerous state-of-the-art optimization algorithms. Convincing proof of CZOA's superiority in convergence behaviour and exploration-exploitation balance is provided by the benchmark function findings. Across a range of functions, including unimodal, multimodal, and high-dimensional ones, CZOA consistently beats the original ZOA. This accomplishment is due to the incorporation of chaotic dynamics from the CSM, which adds variety to the search process and allows CZOA to avoid local optimum and find other optimal solutions in the solution space. Interestingly, CZOA performs better than popular metaheuristics, indicating its potential as a versatile optimisation method. CZOA's competitive edge across a diverse set of benchmark functions underlines its endurance and versatility as a viable solution for a range of optimisation problems in real-world applications. This research emphasises the potential for further advancements in optimisation techniques by underlining the significance of combining bio-inspired techniques with chaotic dynamics. As it continues to evolve and adapt, CZOA has the potential to become a vital tool for tackling challenging optimisation problems in a range of fields.

5. CONCLUSION:

A major step towards adaptable optimisation has been made with the addition of the Chaotic Sinusoidal Map (CSM) to the Zebra Optimisation Algorithm (ZOA). We have added a dynamic and adaptive component to the algorithm by including CSM, which makes it possible to explore and exploit solution spaces for a variety of optimisation issues more effectively. The performance of the improved method was evaluated through trials, and the results showed significant gains over numerous other well-known optimisation algorithms as well as the original ZOA.

The CSM adds a degree of flexibility and unpredictability that helps avoid local optima and improves the algorithm's capacity to identify globally optimal solutions. Furthermore, the versatility of the enhanced ZOA-CSM was evident in its consistent performance across various benchmark functions, including unimodal, multimodal, and hybrid functions. This adaptability underscores its potential to be applied in a diverse array of real-world optimization tasks, from engineering and logistics to machine learning and finance.

The improved algorithm's convergence speed and accuracy are impressive, demonstrating its promise as a trustworthy tool for challenging optimisation settings. The Chaotic Sinusoidal Map's integration successfully strikes a balance between exploration and exploitation, guaranteeing the algorithm's ability to move through solution spaces with efficiency. In summary, the addition of the Chaotic Sinusoidal Map to the Zebra Optimisation Algorithm is a promising development in the optimisation discipline. It is a useful addition to the arsenal of both practitioners and researchers due to its adaptability, robustness, and versatility. This improved technique deserves more study and use in a variety of fields, since it has the potential to solve challenging, practical optimisation issues with notable advantages.

Funding

None

ACKNOWLEDGEMENT

None CONFLICTS OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] B. K. Tripathy et al., "Harris Hawk Optimization: A Survey onVariants and Applications," Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/2218594.

[2] Y. Meraihi, A. R. Dalila, and A. Mohammed, "Dragonfly algorithm : a comprehensive review and applications," Neural Comput. Appl., vol. 0123456789, 2020, doi: 10.1007/s00521-020-04866-y.

[3] A. La, M. A. Al-betar, M. A. Awadallah, A. T. Khader, and L. M. Abualigah, "A comprehensive review: krill herd algorithm (KH) and its applications," Appl. Soft Comput. J., 2016, doi: 10.1016/j.asoc.2016.08.041.

[4] H. Chen, C. Li, M. Mafarja, A. A. Heidari, Y. Chen, and Z. Cai, "Slime mould algorithm: a comprehensive review of recent variants and applications," Int. J. Syst. Sci., no. December, 2022, doi: 10.1080/00207721.2022.2153635.

[5] L. Abualigah, "Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications," Neural Comput. Appl., no. July, 2020, doi: 10.1007/s00521-020-05107-y.

[6] H. Faris, I. Aljarah, M. A. Al-betar, and S. Mirjalili, "Grey wolf optimizer: a review of recent variants and applications," Neural Comput. Appl., no. November, 2017, doi: 10.1007/s00521-017-3272-5.

[7] L. Abualigah, M. Shehab, M. Alshinwan, S. Mirjalili, and M. Abd, "Ant Lion Optimizer : A Comprehensive Survey of Its Variants and Applications," Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1397–1416, 2021, doi: 10.1007/s11831-020-09420-6.

[8] R. Sheikholeslami and A. Kaveh, "A SURVEY OF CHAOS EMBEDDED META-HEURISTIC ALGORITHMS," vol. 3, no. 4, pp. 617–633, 2013.

[9] P. G. Dhawale, V. K. Kamboj, and S. K. Bath, "A levy flight based strategy to improve the exploitation capability of arithmetic optimization algorithm for engineering global optimization problems," Trans. Emerg. Telecommun. Technol., no. September 2021, pp. 1–65, 2023, doi: 10.1002/ett.4739.

[10] S. Arora and S. Singh, "An improved butterfly optimization algorithm with chaos," J. Intell. Fuzzy Syst., vol. 32, no. 1, pp. 1079–1088, 2017, doi: 10.3233/JIFS-16798.

[11] M. Kohli and S. Arora, "Chaotic grey wolf optimization algorithm for constrained optimization problems," J. Comput. Des. Eng., 2018, doi: 10.1016/j.jcde.2017.02.005.

[12] D. Jia, G. Zheng, and M. Khurram, "An effective memetic differential evolution algorithm based on chaotic local search," Inf. Sci. (Ny)., vol. 181, no. 15, pp. 3175–3187, 2011, doi: 10.1016/j.ins.2011.03.018.

[13] M. Azizi, M. Baghalzadeh Shishehgarkhaneh, M. Basiri, and R. C. Moehler, "Squid Game Optimizer (SGO): a novel metaheuristic algorithm," Sci. Rep., vol. 13, no. 1, p. 5373, 2023, doi: 10.1038/s41598-023-32465-z.

[14] A. A. Abdelhamid et al., "Waterwheel Plant Algorithm: A Novel Metaheuristic Optimization Method," Processes, vol. 11, no. 5, pp. 1–25, 2023, doi: 10.3390/pr11051502.

[15] M. Abdel-Basset, R. Mohamed, M. Jameel, and M. Abouhawwash, Spider wasp optimizer: a novel meta-heuristic optimization algorithm, no. 0123456789. Springer Netherlands, 2023. doi: 10.1007/s10462-023-10446-y.

[16] E. Trojovska, M. Dehghani, and P. Trojovsky, "Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm," IEEE Access, vol. 10, pp. 49445–49473, 2022, doi: 10.1109/ACCESS.2022.3172789.

[17] I. Matoušová, P. Trojovský, M. Dehghani, E. Trojovská, and J. Kostra, "Mother optimization algorithm : a new human - based metaheuristic approach for solving engineering optimization," Sci. Rep., pp. 1–27, 2023, doi: 10.1038/s41598-023-37537-8.

[18] J. Guo, G. Zhou, K. Yan, B. Shi, Y. Di, and Y. Sato, "A novel hermit crab optimization algorithm," no. 0123456789, pp. 1–27, 2023, doi: 10.1038/s41598-023-37129-6.

[19] M. Kaveh, M. S. Mesgari, and B. Saeidian, "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Math. Comput. Simul., vol. 208, pp. 95–135, 2023, doi: 10.1016/j.matcom.2022.12.027.

[20] A. T. Khan, S. Li, Y. Zhang, and P. S. Stanimirovic, "Eagle perching optimizer for the online solution of constrained optimization," Memories - Mater. Devices, Circuits Syst., vol. 4, no. November 2022, p. 100021, 2023, doi: 10.1016/j.memori.2022.100021.

[21] S. Mohapatra and P. Mohapatra, American zebra optimization algorithm for global optimization problems, vol. 13, no. 1. Nature Publishing Group UK, 2023. doi: 10.1038/s41598-023-31876-2.

[22] Y. R. Vada, B. E. Oshiojum, A. B. Krishna, and V. K. Kamboj, "Sparrow Search Optimizer for Constrained Engineering Optimal Designs," Proc. - 5th Int. Conf. Smart Syst. Inven. Technol. ICSSIT 2023, no. Icssit, pp. 1399–1404, 2023, doi: 10.1109/ICSSIT55814.2023.10060911.

[23] E. Trojovsk, M. Dehghani, and V. Leiva, "Drawer Algorithm : A New Metaheuristic Approach for Solving Optimization Problems in Engineering," pp. 1–35, 2023.

[24] P. Trojovsk, "Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems," 2023.

[25] M. Dehghani and P. Trojovský, "Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems," Front. Mech. Eng., vol. 8, no. January, 2023, doi: 10.3389/fmech.2022.1126450.

[26] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, "Slime mould algorithm: A new method for stochastic optimization," Futur. Gener. Comput. Syst., vol. 111, pp. 300–323, Oct. 2020, doi: 10.1016/j.future.2020.03.055.

[27] M. Azizi, U. Aickelin, H. A. Khorshidi, and M. B. Shishehgarkhaneh, "Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization," Sci. Rep., pp. 1–23, 2023, doi: 10.1038/s41598-022-27344-y.

[28] P. Trojovský, M. Dehghani, E. Trojovská, and E. Milkova, "Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems," C. - Comput. Model. Eng. Sci., vol. 136, no. 2, pp. 1527–1573, 2023, doi: 10.32604/cmes.2023.025908.

[29] M. Abdel, B. Doaa, E. Shahat, and M. Jameel, Exponential distribution optimizer (EDO): a novel math - inspired algorithm for global optimization and engineering problems, no. 0123456789. Springer Netherlands, 2023. doi: 10.1007/s10462-023-10403-9.

[30] M. Abdel-basset and R. Mohamed, "Nutcracker optimizer: A novel nature inspired metaheuristic algorithm for global optimization and engineering design problems," no. February, 2023, doi: 10.1016/j.knosys.2022.110248.

[31] Y. Yuan et al., "Coronavirus Mask Protection Algorithm: A New Bio-inspired Optimization Algorithm and Its Applications," J. Bionic Eng., no. 0123456789, 2023, doi: 10.1007/s42235-023-00359-5.

[32] A. H. Gandomi, X. S. Yang, S. Talatahari, and A. H. Alavi, "Firefly algorithm with chaos," Commun. Nonlinear Sci. Numer. Simul., vol. 18, no. 1, pp. 89–98, 2013, doi: 10.1016/j.cnsns.2012.06.009.

[33] A. Naanaa, "Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization," Appl. Math. Comput., vol. 269, no. December, pp. 402–411, 2015, doi: 10.1016/j.amc.2015.07.111.

[34] H. Lu, X. Wang, Z. Fei, and M. Qiu, "The effects of using chaotic map on improving the performance of multiobjective evolutionary algorithms," Math. Probl. Eng., vol. 2014, 2014, doi: 10.1155/2014/924652.

[35] M. S. Tavazoei and M. Haeri, "Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms," Appl. Math. Comput., vol. 187, no. 2, pp. 1076–1085, 2007, doi: 10.1016/j.amc.2006.09.087.
[36] M. Braik, A. Hammouri, J. Atwan, M. A. Al-Betar, and M. A. Awadallah, "White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems," Knowledge-Based Syst., vol. 243, p. 108457, 2022, doi: 10.1016/j.knosys.2022.108457.

[37] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, "Marine Predators Algorithm: A nature-inspired metaheuristic," Expert Syst. Appl., vol. 152, no. March, 2020, doi: 10.1016/j.eswa.2020.113377.

[38] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm," Adv. Eng. Softw., vol. 95, pp. 51–67, 2016, doi: 10.1016/j.advengsoft.2016.01.008.

[39] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer," Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.

[40] E. Rashedi, H. Nezamabadi-pour, and S. G. Saryazdi, "A Gravitational Search Algorithm, Information Sciences," Inf. Sci. (Ny)., 2009 [41]Anand D, Arulselvi G, Balaji GN. Detection of tumor affected part from histopathological bone images using morphological classification and recurrent convoluted neural networks. Journal of Pharmaceutical Negative Results 2022; 13(9): 4992–5008. doi: 10.47750/pnr.2022.13.S09.617

[42] Anand D, Arulselvi G, Balaji GN. An assessment on bone cancer detection using various techniques in image processing. In: Editor Deepak BBVL, Editor Parhi D, Editor Biswal B, et al. (editors). Applications of Computational Methods in Manufacturing and Product Design. Springer; 2022.

[43] Anand D, Arulselvi G, Balaji GN, Chandra GR. A deep convolutional extreme machine learning classification method to detect bone cancer from histopathological images. International Journal of Intelligent Systems and Applications in Engineering 2022; 10(4): 39–47.

[44] Anand, Dama, et al. "Optimized Swarm Enabled Deep learning technique for bone tumor detection using Histopathological Image." SINERGI 27.8 (2023): 451-466.

[45] Anand, Dama, G. Rama Krishna Srinivas, and Amara SALG Gopala Gupta. "Fingerprint Identification and Matching." Advances in Decision Sciences, Image Processing, Security and Computer Vision: International Conference on Emerging Trends in Engineering (ICETE), Vol. 1. Springer International Publishing, 2020.

[46] Anand, D., et al. "Original Research Article Identification of meningioma tumor using recurrent neural networks." Journal of Autonomous Intelligence 7.2 (2024).

[47] Khalaf, O. I., Anand, D., Abdulsahib, G. M., & Chandra, G. R. (2024). Original Research Article A coherent salp swarm optimization based deep reinforced neuralnet work algorithm for securing the mobile cloud systems. Journal of Autonomous Intelligence, 7(3).

[48] Kumar, P. Dharmendra, A. Suhasini, and D. Anand. "Crop Disease Detection Using 2D CNN Based Deep Learning Architecture." International Journal of Intelligent Systems and Applications in Engineering 11.2 (2023): 461-470.

[49] NALINI, N., SIVARAMAN, R., KUMAR, K. B., BHAT, M., ANAND, D., KUMARI, S. A., & SRAVANI, D. (2023). IMPACT OF OXIDATIVE STRESS ON CELLULAR COMMUNICATION AND ITS IMPLICATIONS FOR DISEASES. Oxidation Communications, 46(2).

[50] Rajesh Chandra, G., Tata, V., & Anand, D. (2022, November). Real-Time Voice Cloning System Using Machine Learning Algorithms. In Conference of Innovative Product Design and Intelligent Manufacturing System (pp. 525-534). Singapore: Springer Nature Singapore.

[51] Anand, D., Tata, V., Samriya, J. K., & Kumar, M. (2023). A Review on Deep Learning-Enabled Healthcare Prediction Technique: An Emerging Digital Governance Approach. Soft Computing: Theories and Applications: Proceedings of SoCTA 2022, 253-263.

[52] Rufus, N. H. A., Anand, D., Rama, R. S., Kumar, A., & Vigneshwar, A. S. (2022, November). Evolutionary Optimization with Deep Transfer Learning for Content based Image Retrieval in Cloud Environment. In 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) (pp. 826-831). IEEE.

[53] Anand, D., Rama Krishna Srinivas, G., & Gopala Gupta, A. S. (2020). Fingerprint Identification and Matching. In Advances in Decision Sciences, Image Processing, Security and Computer Vision: International Conference on Emerging Trends in Engineering (ICETE), Vol. 1 (pp. 528-536). Springer International Publishing.

[54] Palanisamy, S., Rubini, S.S., Khalaf, O.I. et al. Multi-objective hybrid split-ring resonator and electromagnetic bandgap structure-based fractal antennas using hybrid metaheuristic framework for wireless applications. Sci Rep 14, 3288 (2024). https://doi.org/10.1038/s41598-024-53443-z

[55] P. Chinnasamy et al., "Health Recommendation System using Deep Learning-based Collaborative Filtering, HELIYON (2023), Volume 9, Issue 12, doi: https://doi.org/10.1016/j.heliyon.2023.e22844.

[56] Herman Herman and Oshamah Ibrahim Khalaf. Evidence from School Principals: Academic Supervision Decision-making on Improving Teacher Performance in Indonesia. Advances in Decision Sciences, 2023, Vol 27, 3. https://doi.org/10.47654/v27y2023i3p46-71.

[57] Mohammed Bouasabah and Oshamah Ibrahim Khalaf. A TECHNICAL INDICATOR FOR A SHORT-TERM TRADING DECISION IN THE NASDAQ MARKET. Advances in Decision Sciences, 2023,Vol 27, 3. https://doi.org/10.47654/v27y2023i3p1-13.

[58] Osamah Ibrahim Khalaf et al., "A coherent salp swarm optimization based deep reinforced neuralnet work algorithm for securing the mobile cloud systems," Journal of Autonomous Intelligence.Vol 7, No 3(2024),https://doi.org/10.32629/jai.v7i3.654.