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1. INTRODUCTION 

In recent years, healthcare data analytics has gained popularity as more data becomes available from clinical 

institutions, patients, and pharmaceutical industries, which introduces a new possibility of computational approaches 

revealing data-driven insights and potentially improving services offered by healthcare systems [1], [2]. 

The complex nature of the healthcare system and its related operations has led to fragmented data on the system. For 

example, a hospital can only access its own medically private records that belong to its patients. Usually, these files are 

extremely sensitive and susceptible because of the Private Health Information (PHI) that belongs to people. Strict 

regulations and legislation were enacted to control accessibility and data analysis, as in the Data Protection Regulation 

(GDPR) [3] and the Health Insurance Portability and Accountability Act (HIPAA) [4]. These present a challenge for 

state-of-the-art Machine Learning (ML) and its subsidiary Deep Learning (DL) [5] technologies, which require a 

massive amount of data for training.  

ABSTRACT: Digitization of healthcare data has shown an urgent necessity to deal with privacy concerns within 

the field of deep learning for healthcare organizations. A promising approach is federated transfer learning, 

enabling medical institutions to train deep learning models collaboratively through sharing model parameters rather 

than raw data. The objective of this research is to improve the current privacy-preserving federated transfer 

learning systems that use medical data by implementing homomorphic encryption utilizing PYthon for 

Homomorphic Encryption Libraries (PYFHEL). The study leverages a federated transfer learning model to classify 

cardiac arrhythmia. The procedure begins by converting raw Electrocardiogram (ECG) scans into 2-D ECG 

images. Then, these images are split and fed into the local models for extracting features and complex patterns 

through a finetuned ResNet50V2 pre-trained model. Optimization techniques, including real-time augmentation 

and balancing, are also applied to maximize model performance. Deep learning models can be vulnerable to 

privacy attacks that aim to access sensitive data. By encrypting only model parameters, the Cheon-Kim-Kim-Song 

(CKKS) homomorphic scheme protects deep learning models from adversary attacks and prevents sensitive raw 

data sharing. The aggregator uses a secure federated averaging method that averages encrypted parameters to 

provide a global model protecting users’ privacy. The system achieved an accuracy rate of 84.49% when evaluated 

using the MIT-BIH arrhythmia dataset. Furthermore, other comprehensive performance metrics were computed to 

gain deeper insights, including a precision of 72.84%, recall of 51.88%, and an F1-score of 55.13%, reflecting a 

better understanding of the adopted framework. Our findings indicate that employing the CKKS encryption scheme 

in a federated environment with transfer cutting-edge technology achieves relatively high accuracy but at the cost 

of other performance metrics, which is lower in the encrypted settings when compared to the plain one, an 

acceptable trade-off to ensure data privacy through encryption with achieving an optimal model performance.  
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The amount and variety of training data play a crucial role in the results of DL within various medical applications 

[6], [7]. Labeling data is important, as some organizations might possess unlabeled data while others have very limited 

data. The labeling process within the medical domain is expensive and requires human expertise. At the same time, due 

to the regulatory constraints of medical data, it is impractical to collect and share private patient information in a central 

data lake or server. Enabling the development of effective and accurate DL models for applications with limited 

samples, features, or labels while complying with data privacy and security regulations is a difficult challenge [8]. 

To address this challenge, Google introduced a Federated Learning (FL) system in 2016 [9], wherein a global model 

is updated through the collaboration of distributed participants while keeping their data locally stored. Their framework 

necessitates all contributors to share the same feature space. These approaches are only applicable within the context of 

data possessing either common features or common samples under federation.  

The focus has shifted towards Transfer Learning (TL) as an approach to enhance the performance of a target model 

by utilizing the pre-trained source model. Typically, the source and target datasets exhibit similarities in domains and 

modalities. Challenges in Electrocardiogram (ECG) classification, such as biased classification and small-sized 

datasets, are evident. With limited training data, employing deep learning algorithms to enhance classification model 

performance becomes essential to prevent model overfitting. Training the target ECG classification models through 

fine-tuning with the large-scale dataset of pre-trained source models could help alleviate model overfitting and biased 

classification [10]. 

This study employs ResNet50V2, a commonly used pre-trained TL model architecture. After converting ECG 

signals into 2-D grayscale images, the pre-trained model can analyze them to aid physicians in diagnosing cardiac 

arrhythmia. Given that hospitals own the data and adhere to strict privacy regulations that forbid the disclosure of any 

information beyond the model results, Homomorphic Encryption (HE) emerges as a viable approach. It encrypts 

intermediate parameters while allowing mathematical computations to be performed [11]. This methodology is capable 

of safeguarding the DL model from adversarial attacks. 

This research introduces an innovative framework for ECG data classification, leveraging TL for feature extraction, 

FL for collaborative training, and HE implemented through PYthon For Homomorphic Encryption Libraries 

(PYFHEL) [12] for secure aggregation of model updates. In addition to enhancing patients’ privacy protection, the 

integration of these state-of-the-art technologies improves the efficiency and accuracy of ECG data analysis.  

The main contributions of this work are as follows: 

• Implementation and evaluation, to the best of our knowledge, of the first Privacy-Preserving Federated 

Transfer Learning (PPFTL) framework for 2-D ECG arrhythmia classification.  

• Integration of transfer knowledge to reduce the substantial margin of computation run times between non-

encrypted and encrypted versions of the proposed system, leading to a more efficient computational process 

and significantly improving the overall runtime performance. 

• Development of an end-to-end privacy-preserving healthcare system demonstrating that sensitive ECG data 

can be securely shared among multiple participants without compromising patient data. 

• Highlighting how healthcare agencies can collaborate using Federated Transfer Learning (FTL) and a data-

protected shared model. 

• Use of a real-world ECG dataset to verify the validity of the proposed system. 

The remainder of the study is organized as follows: Section 2 provides a comprehensive review of existing research 

and the current state of medical privacy-preserving FL, highlighting the significance of the suggested framework and its 

contributions to the field. Section 3 elucidates the preliminaries of HE, including the CKKS scheme utilized, FL, and 

TL, delineating how it enhances privacy and security. The system model encompasses the architecture and essential 

processes, commencing from client initialization, the secure aggregation step at the server side, to the client-side 

decryption processes is described in Section 4. Section 5 discusses the dataset, preprocessing techniques, and 

evaluation results. The encrypted FTL scheme is compared with the plain one, alongside locally trained models and the 

computation costs of the proposed models. Section 6 extensively discusses the results. Finally, in Section 7, we 

conclude the study by summarizing our findings and contributions and addressing the implications of privacy-

preserving FL implementations in the medical and healthcare domains. 

 

2. RELATED WORK 

In healthcare, ML models offer significant advantages, particularly when coupled with private medical data. These 

models are usually trained locally to safeguard the privacy of sensitive healthcare data. However, developing effective 

models without extensive, diverse datasets covering a wide range of health conditions can pose challenges. Previous 

studies have suggested that employing FL approaches may offer a viable solution to address this issue. For instance, 

studies [13]–[15] have explored the potential use of FL in the digital health domain. Specifically, it draws attention to 

the obstacles and concerns that must be addressed for FL to be successfully adopted and to secure disseminated and 

private biomedical data. The impact of FL is examined by multiple stakeholders, encompassing patients, doctors, and 

healthcare organizations. 
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The study in [6] presented a Privacy-Preserving Federated Learning (PPFL) method for brain tumor segmentation 

using the BraTS 2018 dataset. The proposed FL system is based on the client-server model and applies a federated 

averaging algorithm. The server coordinates the clients’ local Stochastic Gradient Descent (SGD) updates and manages 

the global Deep Neural Network (DNN) model. In addition, the Differential Privacy (DP) technique is used to ensure 

the privacy of medical records. Experimental results show that the FL method can preserve sensitive patient 

information while delivering high accuracy. The study does not evaluate how privacy-preserving methods affect the 

accuracy and performance of the brain tumor segmentation model. Furthermore, it does not examine the system’s 

scalability for more complex medical imaging applications or larger datasets. 

In [16], the authors introduced the use of FL for multi-institutional collaboration in medical imaging, enabling DL 

modeling without sharing sensitive patient data. They evaluate and compare two alternative forms of collaborative 

training, namely Incremental Institutional Learning (IIL) and Cyclic Institutional Learning (CIIL), with FL, using the 

same BraTS 2018 dataset previously utilized in [6]. Both IIL and CIIL involve sequentially training a shared model, 

with CIIL incorporating a cycling loop across institutions. Results indicate that FL produces comparable dice scores to 

models trained with shared data. FL outperforms IIL and CIIL due to their susceptibility to catastrophic forgetting and 

increased complexity. Furthermore, the authors mention DP as a means to prevent data leakage during model updates, 

deferring it to future research. 

Encryption methods, such as HE, play a crucial role in safeguarding sensitive medical data. In [17], the authors 

introduced a novel approach to bolster the security of E-healthcare systems by integrating secure Multiparty 

Computation (MPC) with the Paillier encryption scheme. This methodology guarantees the confidentiality and security 

of critical patient information. Moreover, there is a growing interest in leveraging IoT-enabled health equipment to 

provide accurate medical data. The proposed methodology could also find applications in E-auctions and E-voting 

systems. However, the study lacks comprehensive details on the scalability of the suggested technique, particularly 

when dealing with a large number of patients. 

The studies conducted by Wibawa et al. [18], [19] introduced PPFL for medical data, utilizing HE to safeguard 

sensitive data against privacy attacks. Employing a secure MPC protocol further fortifies the model against adversaries. 

The proposed method’s model accuracy was evaluated using a real-world medical dataset of COVID-19 radiography 

images with two classifications, COVID and Normal, achieving accuracy scores above 80% with both encrypted and 

plaintext data. However, the implementation of HE leads to a significant increase in the system’s running time; for two 

clients, the increase is approximately 629.37%, for three clients, it’s about 690.91%, and for seven clients, it rises to 

approximately 872.20%, thereby limiting its practical application in real-world scenarios. 

Bocu et al. [20] developed a HE scheme integrated with a heart rate-based personal health information system. The 

results indicate that the described method met the criteria for secure data processing for 500 patients with anticipated 

storage and network challenges. The study needs to address the potential challenges and limitations of combining the 

system with other wearable medical devices and data sources. 

Authors in [21] proposed a unique approach for efficient cloud computing Fully Homomorphic Encryption (FHE). 

The suggested solution secures encrypted data processing with twin-key encryption and magic number fragmentation. 

Cryptanalytic attacks are used to evaluate the efficiency of the suggested method, and a cognitive smart city scenario 

proves its applicability. When tested against brute-force attacks, the system proved to be highly resilient. The study 

does not discuss the limitations of the presented FHE scheme, which utilizes twin-key encryption and magic number 

fragmentation. Also, there are no explicit details about the dataset used in the study. 

Ali et al. [22] developed an innovative DL model with a searchable blockchain system and HE, allowing users to 

gain access to distributed data via search securely. They evaluated and compared the suggested access control 

mechanisms on an Internet of Things (IoT) dataset to industry standards. The stated approaches are implemented using 

Hyperledger smart contracts. The proposed method significantly improves security, anonymity, and user behavior 

monitoring in comparison to baseline approaches, hence improving the efficiency of a blockchain-based IoT system. 

The study acknowledges several limitations, including the need for a privacy-preserving technique to prevent 

unauthorized access, issues with data transfer and integrity across IoT networks, and the need for a responsive security 

mechanism to distinguish between normal and attack instances in IoT settings. 

In [23], the authors developed a deep 1-Dimensional Convolutional Neural Network (1-D CNN) based heartbeat 

classification model. This model classifies five AAMI EC57 arrhythmias. The authors additionally propose a method 

for transforming the knowledge acquired through this task to the challenge of classifying Myocardial Infarction (MI). 

The proposed method achieves a classification accuracy of 93.4% in arrhythmia and 95.9% in MI. 

Gao et al. [24] introduced Heterogeneous Federated Transfer Learning (HFTL), which uses TL to handle different 

feature spaces. They devised a privacy-preserving transfer learning approach to eliminate covariate shifts in 

homogeneous feature spaces and combine heterogeneous feature spaces from different data owners. Two secure multi-

party learning protocol variants based on the HE and Secret Sharing (SS) techniques demonstrate the HFTL’s security, 

efficiency, and scalability over five benchmark datasets. Nevertheless, a thorough investigation is required to assess the 

scalability of the suggested approach in scenarios involving a more significant number of clients. 

The study [8] introduced FTL to improve statistical modeling in data federations. The research also presents novel 

methods for Two-Party Computation (2PC) with Neural Network (NN) within the FTL framework, integrating 
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additively HE and SS via beaver triples to achieve almost lossless accuracy with little NN adjustments. This research 

applies an FTL system to MNIST, CIFAR-10, and CIFAR-100 datasets to demonstrate its effectiveness. The study 

found that the FTL framework outperforms conventional approaches while preserving data privacy. 

The majority of previous work refrained from incorporating numerous deep layers, instead focusing on utilizing 

simple models coupled with privacy-preserving techniques such as DP, MPC, and HE. This choice stems from the 

noise generated by deep convolutional layers. Convolutional layers heavily rely on matrix computations, leading to an 

exponential increase in noise through multiplication processes in HE. To address this issue, the proposed privacy 

approach employs TL, where the weights of the deep model are frozen, particularly in the feature extraction part of the 

architecture, where most computationally intensive convolutions occur. Moreover, TL reduces computation costs 

across distributed models, as training for the suggested approach does not need to commence from scratch. The 

integration of FL, TL, and HE represents cutting-edge technologies that strike a balance between model performance, 

noise management, and data privacy. 

3. PRELIMINARIES 

In the following subsections, we present the fundamental theoretical foundations for this research. We start by 

exploring cryptographic methods such as CKKS. Subsequently, we delve into an analysis of healthcare data privacy 

regulations. Finally, we investigate Federated and Transfer Learning methods. 

3.1 HOMOMORPHIC ENCRYPTION 

Data encryption is commonly employed in both enterprise and individual environments to safeguard data while at 

rest or in transmission. However, traditional approaches pose a security vulnerability during computational operations, 

particularly in highly sensitive sectors such as healthcare. 

In response to this issue, HE emerged, allowing mathematical operations to be performed directly on encrypted 

data without the need for decryption beforehand. The decryption results remain encrypted and yield the same or nearly 

identical results consistently. By enabling secure data processing without revealing actual data, HE meets the stringent 

privacy standards of today’s digitally interconnected world, aligning with the strict provisions of GDPR and HIPAA. If 

we define encryption as 𝐸𝑛𝑐, decryption as 𝐷𝑒𝑐, ⊙ representing homomorphic addition or multiplication operations 

over ciphertext, and 𝑓() as a function applied to plaintext values x and y using encryption key pk. In that case, the 

property of HE can be stated as follows:  

 
HE schemes facilitate outsourcing data storage and processing while preserving clients’ privacy. They allow data 

encryption and outsourcing to commercial cloud platforms while the data remains encrypted. HE can be classified into 

several categories based on the operations they support [25]: 

1. Partially Homomorphic Encryption (PHE) supports only one type of mathematical operation, either addition 

or multiplication, but not both infinitely. While these schemes are interesting in their own right, their 

functionality is limited. 

2. Somewhat Homomorphic Encryption (SHE) enables both additive and multiplicative operations. However, 

each operation introduces error noise into the system, necessitating bounding the number of computations for 

accurate evaluation. Message decryption fails if the noise exceeds a certain threshold. 

3. FHE enables arbitrary computations involving unlimited addition and multiplication operations. This scheme 

employs a bootstrapping strategy to manage and decrease noise, enabling continuous and accurate decryption. 

This study utilizes an SHE scheme, which allows both multiplication and addition. Such operations are essential 

for aggregating the weights of DL models. 

3.2 CHEON-KIM-KIM-SONG (CKKS) SCHEME   

Cheon et al. [26] introduced the CKKS scheme, which is an approximative HE scheme featuring a tunable level of 

approximation error for secure data computation over real or complex numbers directly. This scheme operates on 

polynomials within a ring, and its security is based on the assumed hardness of the Ring Learning With Errors (Ring-

LWE) problem. In machine or deep learning technologies, where the approximation of arithmetic computations is 

adequate for privacy preservation, CKKS is highly desirable. The following section provides a brief explanation of the 

scheme under consideration. 

Given initialized parameters, where n denotes a ring dimension, q represents a prime modulus, and Δ signifies a 

scaling factor, the secret key sk is randomly selected from , and the public key  is computed. The 

encoding process involves converting a vector of complex numbers, denoted as  ∈ , and a value Δ > 1 into a single 

object, denoted as a, in the plaintext domain. This is achieved by applying the encoding function 

. Encryption employs pk and an error distribution χ to produce ciphertext 

 Homomorphic evaluation, denoted as , adds polynomial 

components, whereas multiplication  results in , which requires 
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relinearization to reduce dimensionality. Following, the rescaling process is performed after multiplication to reduce 

noise and provide a ciphertext that closely matches the input, using . sk is employed 

on the ciphertext to decrypt and get an approximate encoded plaintext . Decoding is an inverse 

process to encoding, at which  returns a vector of complex numbers. 

PYFHEL stands as a user-friendly API that comprehensively supports CKKS and facilitates efficient management 

of security parameters to attain the necessary level of security. Moreover, when dealing with larger parameter sizes, 

PYFHEL demonstrates robust optimization for such implementations, striking a balance between security requirements 

and computational costs that render it suitable for encrypted computations. It also facilitates the development of 

intricate cryptographic operations and integrates seamlessly into the technology stack utilized to implement the 

suggested framework. Section 4.2 elaborates on the employed security parameters within the context and key 

generation processes. 

3.3 REGULATORY ASPECTS OF PRIVACY IN HEALTHCARE DOMAIN 

Trust and privacy represent critical components of modern healthcare systems that must remain uncompromised. 

Establishing trust among stakeholders, encompassing patients, healthcare workers, legislators, and vendors of 

technological solutions, poses a multifaceted and challenging task. 

Given the personal nature of healthcare records, maintaining privacy and security is crucial. Various types of 

information must be protected due to the sensitive nature of healthcare records. This includes patients’ names, social 

security numbers, addresses, birth dates, and bank account information. It also contains other details, such as 

information about a patient’s physical and mental condition that provides insight into their current state of health. Data 

concerning healthcare services such as visits, diagnoses, prescribed medications, and utilized medical equipment are 

also sensitive. Lastly, information about healthcare facilities and healthcare professionals who administer medical 

treatment must be safeguarded [19]. 

GDPR and HIPAA are significant legislative measures that regulate data privacy within the European Union and 

the USA, respectively. They have a profound impact on healthcare data privacy regulations in both the public and 

private sectors, emphasizing individuals’ rights to control the usage of their private data. The combination of FTL with 

the CKKS encryption scheme provides healthcare systems with exceptional data privacy and secure sharing 

capabilities. This integrated strategy enhances the security of healthcare systems and aligns them with GDPR and 

HIPAA standards, ensuring a patient-driven approach [27]. 

3.4 FEDERATED LEARNING 

Federated learning is a decentralized framework for machine learning that facilitates collaboration among 

stakeholders, including healthcare and other data owners, to develop a shared model while maintaining local data 

privacy. Entities with stringent privacy policies favor this approach as it only transmits the model’s parameters or 

gradients. In FL, participants can train a unified model on their respective local datasets, even if these datasets exhibit 

vastly different distributions of common features and occupy various feature spaces. The trained models can then be 

aggregated on a centralized server or collaboratively among participants to create a global model. FL is adaptable to 

various technical platforms and applicable in centralized, decentralized, or heterogeneous environments. It serves as an 

effective strategy for ensuring data privacy and security, particularly in healthcare, where data heterogeneity and 

privacy are crucial [19]. This efficacy stems from the localized nature of the data and the collaborative training 

approach inherent in FL.  

Collecting medical data on a large scale poses challenges due to privacy, ethics, and security concerns, resulting in 

medical institutes gathering ECG datasets on a smaller scale. Additionally, obtaining a large, well-annotated dataset 

necessitates considerable professional expertise and a time-consuming process. TL emerges as a viable solution to 

address the aforementioned issues faced by DL, utilizing well-trained public domain models to transfer knowledge 

from source to destination domains [28]. 

3.5 TRANSFER LEARNING 

TL is an ML technique that leverages prior knowledge acquired from one domain to enhance learning in another, 

albeit interconnected, domain. This strategy allows the utilization of patterns and insights from a broader source 

domain when the target domain lacks labeled data [29]. An effective method involves employing a pre-trained deep 

CNN for automatic feature extraction. The convolutional layers within these networks retain feature maps learned 

during training and possess knowledge of patterns present in the original dataset. The intermediate layers of deep neural 

networks are capable of generating pre-extracted features more effectively than hand-crafted features for feature 

extraction [30]. 

TL enables healthcare personnel to utilize pre-trained models on public medical data, such as X-ray scans, and 

fine-tune them for specific tasks, such as ECG analysis, for early disease detection or personalized treatment planning. 

The application of TL in cardiac healthcare demonstrates potential for improving the accuracy and efficiency of ECG 
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interpretation, as ECG signals can be complex to analyze and may exhibit significant variation among patients. This 

obviates the requirement for extensive labeled ECG data and expedites the development of cardiac diagnostic tools, 

thereby fostering healthcare innovation and efficiency. 

 

4. SYSTEM MODEL 

This section describes the proposed PPFTL approach for classifying 2-D grayscale images of ECG scans. The 

method utilizes a CKKS-based HE scheme and consists of two primary stages. In the initial stage, the client-side 

conducts local training on a Graphical Processing Unit (GPU), employing deep CNN architecture to extract feature 

maps from the ECG images in its local dataset. The second stage occurs on the server-side, where encrypted model 

weight matrices are aggregated. 

The proposed PPFTL system overview, as depicted in Figure 1, ensures data privacy through essential steps and 

describes the algorithms that follow:   

1. Global Model Generation and Distribution: The aggregator or central server initializes a global CNN model 

for the target task and distributes it to all participating clients in an FL environment. 

2. Cryptographic Context and Keys’ Generations: Public and private keys are generated using the PYFHEL 

library and shared among participating clients for encrypting and decrypting a model’s parameters. 

3. Local Model Initialization, Training and Validation: Each client trains the model on their own private 

dataset, where the data stays locally and is protected. After successful training and validation, the best model 

parameters are saved for each client. 

4. Encryption of Model Updates: After the model is trained locally in a successful manner, its parameters, 

usually weights of the fine-tuned layers (not the entire model weights), are encrypted utilizing the CKKS 

encryption scheme.  

5. Secure Aggregation: The encrypted parameters are sent via a secure channel to the central aggregator rather 

than raw data, where a secure federated averaging algorithm over encrypted parameters is performed to 

improve the global model’s generalization and performance accuracy. 

6. Decryption and Model Updates: The encrypted result of the secure averaging procedure is sent back to each 

participating client. Using the generated private key of the CKKS scheme, the model parameters regarding the 

global model are decrypted and reintegrated into the corresponding layers of the local CNN model.   

7. Iterative Training Rounds: The model at each client is re-trained based on the re-embedded global updates, 

then encrypted again for further aggregation by the aggregator. This procedure is repeated for several rounds 

until the model performs adequately. 

8. Model Evaluation and Deployment: The global model is evaluated and deployed for its intended use once it 

has achieved satisfactory performance and passed validation. 

 

 
FIGURE 1. - System overview 
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4.1 NOTATIONS 

: local private dataset at client i. 

: golbal model architecture. 

: local model architecture. 

: global model weights. 

: local model weights. 

c : number of clients.  

𝑙ayer : layer within the model. 

scheme: ckks. 

n: polynomial modulud degree. 

Scale: Encodings will use it for converting float to fixed point. 

qi_size: Number of bits of each prime in the chain. 

: public_key. 

: private_key. 

: encrypted weights’ matrix.  

: Aggregate Encrypted Weights Matrix 

Average encrypted weights matrix.  

4.2 CRYPTOGRAPHIC CONTEXT AND KEYS’ GENERATIONS   

This is a crucial step in safeguarding and ensuring privacy for the local model parameters (updates). PYFHEL first 

establishes the environment for cryptographic homomorphic operations by creating context. The context defines 

fundamental parameters for encryption, decryption, and homomorphic operations, such as scheme_type = CKKS in our 

case, polynomial modulus degree n = 213, which increases the security level and computation complexity. The scale 

value, which affects precision and noise budget (value) in calculations (scale = 230), and the coefficient modulus chain 

qi_sizes = [60, 30, 30, 30, 60], which is essential for the accuracy of the computations performed under encryption, is 

also defined. Next, a public key is generated to encrypt the model parameters from plaintext to ciphertext, and a private 

key is also generated and kept securely on the client’s side, which helps to revert the ciphertext back to its original 

plaintext form. Algorithm 1 illustrates generating cryptographic context and keys (public and private) utilizing 

PYFHEL library.     

Algorithm 1: Generate CKKS Encryption Context and Keys 

Input:  

Scheme (Encryption algorithm CKKS); n (polynomial degree); scale (scale factor); qi_sizes (coefficient 

modulus sizes). 

Output:  

HE (a Pyfhel object with initialized context and generated keys) 

Begin 

Step 1: HE  Pyfhel()                          // Initialize a new Pyfhel object, HE 

Step 2: Set the encryption scheme for HE with specified parameters: 

Step 2.1: scheme: “CKKS” 

Step 2.2: n  2**13 

Step 2.3: scale: scale  2**30 

Step 2.4: qi_sizes: [60, 30, 30, 30, 60]            

Step 3: HE.contextGen (parameters)        // Generate context for HE with the specified scheme and parameters 

Step 4: HE.KeyGen ()          // Generate encryption and decryption keys for HE 

Step 5: Capacity  (n / 2 = 4,096) 

Step 6: Return (HE) object with the context and keys configured 

End 

 

4.3 CLIENT INITIALIZATION  

The steps outlined in Algorithm 2 illustrate the entire sequence of actions occurring during the initialization stage. 

Each client inherits both the global architecture and the global model weights, then independently retrains their model’s 

higher layers using their own private dataset with a batch size of 128 and 40 rounds, while keeping the generic feature 

extraction layers unchanged and freezing their weights. The model is compiled with a categorical cross-entropy loss 

function and the Adam optimizer. Subsequently, the weight matrix of the trained model is encrypted and transmitted to 

the server using the HE-CKKS encryption scheme. For successful encryption, the public and private keys were 

generated beforehand (prior to the training step) based on the CKKS homomorphic crypto scheme by utilizing the 

PYFHEL library. After training, the algorithm iterates over each layer within the trained model, utilizing the generated 
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public key to encrypt its parameters, and then additively appends them to an encrypted weights matrix. This process 

continues until all weights are encrypted and properly structured before transmission. 

Algorithm 2 Client Model Training  

Input: 

Local dataset ,  Public encryption key , 

Initialized Global model with weight . 

Output: 

Encrypted weights matrix  

Begin: 

Step 1:  

Step 2:              // Inherit Global Architecture 

Step 3:                 // Initialize Weights from Global Model 

Step 4:  

Step 5:  

Step 6:  

Step 7: For each layer ∈ ℎ do: 

Step 7.1: ← Encrypt ( , )    // Encrypt Layer Weights 

Step 7.2: ←  ∪    // Aggregate Encrypted Weights 

Step 8: End For 

Step 9: Return     // weights’ matrix in encrypted form 

End 

4.4 MODEL AGGREGATION 

The central server aggregation process starts by initializing a storage structure for the averaged encrypted weights 

and computes an encrypted version of the denominator, which represents the reciprocal of the total number of clients. 

The encrypted weights matrix of each client is then retrieved and homomorphically added to the aggregation process 

element-wise, ensuring that every corresponding weight belonging to each client equally contributes to the final 

aggregated sum. Subsequently, the average weight of neurons in the encrypted domain is computed using the Federated 

Averaging algorithm (FedAvg). Algorithm 3 provides a detailed description of the aggregation process. 

 

Algorithm 3: Secure Model Aggregation 

Input: 

Encrypted weight matrices from all participating clients { , , …, };  

c : Number of clients; 

: Public_key; 

: Aggregate Encrypted Weights Matrix; 

Output: 

Average encrypted weights matrix  

Begin: 

Step 1: ← ∅   // Initialize Aggregate Encrypted Weights Matrix 

// Aggregation of Encrypted Weights Matrices:  

Step 2: for i =1 to c  do:   // In parallel 

Step 2.1: If = ∅  then 

// Set Initial Aggregate Encrypted Weights 

Step 2.1.1: ←  

Step 2.2: Else 

// Update Aggregate Encrypted Weights 

Step 2.2.1: ← ⋃  

Step 3: End for 

// Secure Federated Averaging 

Step 4:   ←  Enc  ⊗   

Step 5: Return   
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End 

4.5 MODEL DECRYPTION 

Once the weights have been encrypted and securely aggregated, clients are able to decrypt them. Each local client 

receives the updated global model and iterates through each layer to embed the updated weight values, then decrypts 

them with the private key through the PYFHEL library. It is essential to note that PYFHEL loses reference to the 

decrypted weights (floating point values) and does not have a direct link to its encrypted version; hence, re-referencing 

is needed. This is because the decryption procedure is unidirectional and treats the decrypted weights as a new entity. 

So, for the decryption to be entirely successful, we need to re-embed the decrypted floating point weight values to the 

model. The decryption process is essential for updating the local models, as demonstrated in Algorithm 4. 

Algorithm 4: Decryption and Local Model Update 

Input:  

Private encryption key ; Initialized global model ;  

Averaged encrypted weights matrix . 

Output: 

Updated local model . 

Begin: 

Step 1:  ←  

Step 2: for each layer ∈  do 

// Retrieve encrypted weights for layer l 

Step 2.1: ←          

// Decrypt and update layer weights  

Step 2.2: 𝑙ayer ← D𝑒𝑐𝑟𝑦𝑝𝑡 ( ,  )          

Step 3: end for 

Step 4: .save_Model   // Save the updated local model 

End 

5. EXPERIMENTAL EVALUATION 

This section evaluates the performance and efficacy of our proposed methods. We outline the experimental setup, 

including the datasets used, architecture, and selected performance metrics. Subsequently, we present the results in a 

comparative manner and provide insights into the implications for privacy and computational efficiency.  

5.1 DATASET AND PREPROCESSING 

This study utilized the MIT-BIH arrhythmia database [31], containing properly labeled ECG records of six distinct 

types of cardiac arrhythmia (NOR, PVC, PAB, LBB, RBB, and APC). The ECG signals were converted into 2-D 

grayscale images with dimensions of 96x96. These images were then utilized as input for the ResNet50V2-based 

feature extractor. FTL was employed to facilitate decentralized training among multiple clients while ensuring data 

privacy through the use of HE-CKKS. The 2-D ECG beat images were fed into ResNet50V2, serving as a feature 

extractor, enabling the extraction of key features from the data. From the original dataset, 107,620 samples were 

partitioned into 80% training (86,092) and 20% testing (21,528). Both oversampling of minority classes and 

undersampling of dominant classes were implemented as strategies to address the issue of class imbalance. Since CNN 

served as a classifier, the training dataset was augmented with rotation, zoom, shifting, and flipping to mitigate 

overfitting and balance class distribution among federated participants. This preprocessing technique facilitated the 

effective utilization of spatial features of ECG data in a federated and privacy-preserving manner, establishing a robust 

foundation for subsequent analyses. 

5.2 IMPLEMENTATION AND EXPERMENTAL SETUP  

Table 1 presents a summary of the CNN architecture utilized in the ECG study, which was derived from 

ResNet50V2. 
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Table 1. - Model summary 

Layer (Type) Output Shape No. of Parameters 

input_1 (InputLayer) [(None, 96, 96, 3)] 0 

conv1_pad (ZeroPadding2D) (None, 102, 102, 3) 0 

conv1_conv (Conv2D) (None, 48, 48, 64) 9472 

pool1_pad (ZeroPadding2D) (None, 50, 50, 64) 0 

pool1_pool (MaxPooling2D) (None, 24, 24, 64) 0 

conv2_block1_preact_bn (BatchNormalization) (None, 24, 24, 64) 256 

……   

post_relu (Activation) (None, 3, 3, 2048) 0 

avg_pool (GlobalAveragePooling2D) (None, 2048) 0 

flatten (Flatten) (None, 2048) 0 

dropout (Dropout) (None, 2048) 0 

d1 (Dense) (None, 1024) 2098176 

dropout_1 (Dropout) (None, 1024) 0 

d2 (Dense) (None, 256) 262400 

dropout_2 (Dropout) (None, 256) 0 

classifier (Dense) (None, 6) 1542 

Total params: 25,926,918. Trainable params: 2,362,118. Non-trainable params: 23,564,800 

The implementation code was written in Python 3.8.16 and relies on pre-existing third-party libraries. Keras and 

TensorFlow, two widely used ML libraries, were utilized. Data structures and weight arrays were manipulated using 

NumPy. Furthermore, weight export serialization was achieved using Pickle. PYFHEL [12], a Python wrapper for 

Microsoft SEAL, was employed for HE, offering similar functionalities to SEAL [32]. 

In 2015, Microsoft released the SEAL library for HE, which incorporates both BFV [33] and CKKS [26] schemes. 

The framework provides SHE throughout the entire process, including key generation, evaluation, and operations such 

as addition, multiplication, and relinearization. 

In this study, we use the standard parameters for HE context generation to implement the CKKS scheme within the 

PYFHEL library. Security parameter n = 8192, scale factor = 230, and . The 

dataset is randomly distributed across clients C ∈ (2, 3, and 4). The predictive results of performance in the encrypted 

domain are then compared to those in the plaintext domain. 

5.3 EXPERIMENTAL RESULTS 

Initially, we conducted an experiment using the MIT-BIH dataset for ECG-based arrhythmia classification without 

employing the FTL and CKKS encryption scheme. Only one client participated in this baseline examination. Table 2 

displays the performance metrics for this non-federated, non-encrypted model, with a total execution time of 2761.7636 

seconds. 

Table 2. - Performance metrics for this non-federated, non-encrypted model 

Accuracy Precision Recall F1-score 

0.90537 0.87112 0.82637 0.84175 

Figure 2 shows the loss and accuracy of the analyzed model’s training set, while the confusion matrix depicts the 

results of the heartbeat classification conducted on the test set in Figure 3. 
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FIGURE 2. – Model perfomance evaluation:(a) Model accuracy; (b) Model loss 

 
FIGURE 3. – Confusion matrix for heartbeat classification on a test set 

Subsequently, we employed FTL in the framework and monitored the model’s performance based on evaluation 

metrics. Table 3 presents a side-by-side comparison, assessing the performance metrics of our proposed model in both 

unencrypted and CKKS-encrypted scenarios. 

 

Table 3. - Performance metrics of FTL under different data configurations: Plain vs. Encrypted. 

Balance-Augment 

configuration 
Clients 

Accuracy Precision Recall F1-score 

Plain HE Plain HE Plain HE Plain HE 

NoBalance, NoAugment 

2 0.84367 0.84367 0.92283 0.92283 0.53172 0.53172 0.59115 0.59115 

3 0.86763 0.82962 0.94197 0.93125 0.61931 0.50743 0.71147 0.60058 

4 0.85815 0.84493 0.93718 0.72842 0.56775 0.51881 0.64459 0.55127 

Balance, NoAugment 

2 0.82364 0.83849 0.67416 0.70171 0.83185 0.82468 0.71953 0.73535 

3 0.80897 0.81971 0.64816 0.68371 0.79393 0.80550 0.68094 0.70115 

4 0.77959 0.76012 0.60654 0.64030 0.80540 0.82636 0.66172 0.67549 

Balance, Augment 

2 0.71276 0.71822 0.54876 0.55980 0.75552 0.74910 0.58745 0.58625 

3 0.73564 0.67988 0.60486 0.59664 0.75553 0.78417 0.61769 0.61613 

4 0.72313 0.64602 0.56782 0.57961 0.75755 0.73265 0.60172 0.56798 

 

Figures 4, 5, and 6 provide a comprehensive visualization of evaluation metrics in federated environments, 

including accuracy, precision, recall, and F1-score, across various data configurations grouped by the number of clients 

(2, 3, and 4). The initial models were trained without encryption, followed by the application of the HE-CKKS 

encryption scheme. 
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FIGURE 4. – Performance metrics under ‘NoBalance, NoAugment’ data configuration 

 

 
FIGURE 5. – Performance metrics under ‘Balance, NoAugment’ data configuration 
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FIGURE 6. – Performance metrics under ‘Balance, Augment’ data configuration 

 

In addition to the evaluation metrics computed above, the entire procedure proves to be computationally intensive, 

encompassing client GPU training, collaborative training, and the classification results using a secure aggregated 

model. Tables 4 and 5 illustrate the impact of encryption and the computational complexity associated with the 

collaborative process across varying numbers of clients. 

Table 4. - Encryption Overhead (in seconds) 

 Number of Clients 

2 3 4 

Key Generation 0.0459 0.0403 0.044 

Weight Encryption (Client_1) 15.6733 15.2855 15.3499 

Weight Encryption (Client_2) 15.2039 15.1663 15.2111 

Weight Encryption (Client_3) - 15.2039 15.2303 

Weight Encryption (Client_4) - - 15.2917 

Aggregating Encrypted Weights 5.1959 5.3739 5.4311 

Decrypt Encrypted Aggregated Weights 6.1114 6.2281 6.1971 

Table 5. - Computation Cost (Run Time in seconds)  

No_Of_Clients No Encryption HE-CKKS 

2 3281.2124 3322.1771 

3 3785.0586 3841.0353 

4 4322.2305 4393.4354 

Lastly, we utilized a histogram to visualize the growth in running time against HE. Figure 7 illustrates that 

implementing HE-CKKS led to a slight increase in running time attributed to TL. The low overhead can be attributed to 

the reuse of a pre-trained model for training the classifier layers. 
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FIGURE 7. – Running time in seconds. 

6. DISCUSSION  

The experimental results presented in Table 3 provide valuable insights into encrypted and unencrypted FTL 

approaches, offering performance metrics across various preprocessing configurations and scalability. In FTL 

environments with different numbers of participants, our analysis of performance metrics demonstrates remarkable 

consistency, irrespective of the implementation of HE-CKKS encryption. This consistency is observed across different 

data preprocessing configurations, including “NoBalance, NoAugment,” “Balance, NoAugment,” and “Balance, 

Augment.” Particularly, under the ‘NoBalance, NoAugment’ configuration, the accuracy metrics vary approximately 

from 0.844 to 0.868 with no encryption and from 0.844 to 0.830 with encryption. Similarly, the range for ‘Balance, 

NoAugment’ is 0.780 to 0.824 with no encryption and 0.760 to 0.838 with encryption. Lastly, in the ‘Balance, 

Augment’ configuration, the accuracy ranges from 0.713 to 0.736 with no encryption and from 0.646 to 0.718 with 

encryption. Regardless of whether HE-CKKS encryption is used, the minor variations in these performance metrics 

highlight the system’s robustness and scalability. The findings indicate that HE-CKKS is a practical choice for 

preserving privacy in FTL, regardless of the number of clients or data preprocessing techniques utilized. This makes it 

well-suited for real-world applications. 

Further investigation into computational overhead, as shown in Table 4, indicates that the runtime of both 

encrypted and non-encrypted configurations experiences a slight increase as the number of clients rises. TL 

implementation positively impacts computation time across various client numbers in different scenarios. The runtime 

for two clients increases by approximately 1.25%, for three clients it’s around 1.48%, and for four clients, it’s about 

1.65%. When comparing execution times, CKKS encryption incurs slightly greater computational costs across all 

clients. However, the variance is negligible, suggesting that the CKKS scheme is reasonably efficient. Leveraging pre-

trained ResNet50V2 as a feature extractor diminishes computational costs as encryption and fine-tuning become 

unnecessary in the FTL environment. Additionally, since encryption is solely applied to the classification part, 

computational overhead is confined to a smaller portion of the model compared to encrypting the entire architecture. In 

contrast, the work of Wibawa in the literature, which did not utilize TL, exhibited a substantial discrepancy in 

computation time between non-encrypted and encrypted versions, underscoring the effectiveness of our approach. 

Utilizing TL reduces these discrepancies, resulting in a more efficient computational process that significantly enhances 

overall runtime performance. Furthermore, the file size of their encrypted weights is approximately 7 GB, whereas in 

our case, it is roughly 2.44 GB regardless of execution time. 

7. CONCLUSION 

Data privacy is increasingly crucial, particularly in the healthcare sector, with regulations like GDPR in Europe 

and HIPAA in the US heightening the importance of secure data handling. FTL reduces data exposure by distributing 

data training across institutions. When paired with HE, it enables private and secure computations of sensitive data. 

While these technologies enhance performance, they also introduce computational complexity. As the number of 

clients grows, this trade-off becomes more pronounced, yet it remains acceptable in the healthcare sector, where 

privacy preservation is paramount. 

In our FTL tests, the best outcomes were observed with three clients in a non-encrypted setting, where the accuracy 

reached 86.8%. Encrypted HE-CKKS mode marginally altered peak performance to four clients, achieving 84.5% 

accuracy. In both scenarios, data balance and augmentation led to a reduction in accuracy. When balancing and 

augmentation were applied, accuracy dropped to 64.6% in the encrypted option, compared to 71.2% in the non-

encrypted setting. The results indicate that utilizing HE-CKKS encryption has a limited impact on the model’s 
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accuracy. However, when encryption is combined with data balancing and augmentation, it presents challenges that 

necessitate further research to achieve optimal performance.  

Privacy attacks pose a significant challenge to the development of data-driven healthcare models, as they 

compromise both data security and patient privacy. Therefore, enhancing data security and refining processing 

strategies are imperative. This study advocates for FTL and HE to bolster healthcare application security and efficacy 

by minimizing the sharing of sensitive data. Future research could explore the utilization of Multi-Key CKKS (MK-

CKKS) HE schemes to add an extra layer of security. This feature ensures that aggregated data remains inaccessible to 

any participant, thereby enhancing data privacy and ensuring the confidentiality of model updates. Moreover, 

accommodating various healthcare domains will enhance the scalability and efficiency of the framework, ensuring its 

broader applicability across diverse settings. 
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