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1. INTRODUCTION 

Berth scheduling constitutes a vital aspect of daily operations within container terminals [1]. The Berth Allocation 

Problem (BAP) emerges as a challenging combinatorial optimization problem within maritime transportation systems, 

playing a pivotal influence on vessel handling efficiency. Effective BAP resolution is imperative, as bad choices can 

lead to unwarranted delays and carrier dissatisfaction, considering berths' significant role as a critical resource in 

maritime transportation [2]. The BAP involves the task of allocating suitable berthing location and handling schedule 

for a specified number of ships, adhering to all BAP constraints while optimizing designated objective functions [3]. It 

is all about where and when the vessels should be anchored (see Figure 1). The most often utilized objective functions 

of BAP are minimizing operational costs, increasing seaport productivity, and minimizing the aggregate service and 

waiting times for all vessels [4, 5]. 

The BAP is a non-deterministic polynomial-time hard (NP-hard) optimization problem that is hard to resolve 

optimally in an acceptable timeframe [6, 7]. For NP-hard tasks, the complexity of search time grows proportionally 

with problem size [8]. Consequently, scholars tend for using metaheuristic algorithms to solve BAP as they can attain 

significant success in getting high-quality solutions, in a reasonable time frame [9].  

A relatively recent metaheuristic algorithm, HSA, has got a growing attention amid numerous scholars as a cutting-

edge population-based algorithm that inspired by modern-nature to address diverse hard combinatorial optimization 
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problems [10]. Imitating the way musicians improvise their musical tones, HSA iteratively seeks a state of harmony or 

pleasance (optimal solution) aligned with artistic criteria [11].   

The motives that stimulate us to use HSA are as following [12, 13]: (i) HSA has successfully tackled an enormous 

variety of optimization problems across diverse fields and has demonstrated its capacity to handle challenging 

combinatorial optimization problems. (ii) HSA is considered as simple, flexible, and it requires less mathematical 

operations. (iii) It requires less computational resources, particularly memory and execution time. (iv) Most 

importantly, HSA offers a good-balanced strategy for enhancing both local and global exploration capabilities via its 

improvisation operators.  

In this article, an investigation into the application of HSA to tackle the BAP is underway. Based on the 

information available and in accordance with the latest scientific literature, HSA has never been used to address the 

BAP until the time of writing. Accordingly, this stimulates us to explore the performance of HSA for solving BAP. 

Hence, it is worthy to assess the HSA for this task. The suggested HSA is assessed with a benchmark dataset called I3 

dataset that were used by other scholars and verified by comparing it against latest algorithms reported in the literature 

to confirm its performance.   

The article is arranged as follows:- Problem description of BAP is explained in Section two, whereas the suggested 

harmony search algorithm to tackle the BAP is shown in Section three. Computational findings and discussion are 

given in Section four. Last but not least, Section five shows the conclusion and future works.   

  

2. PROBLEM DESCRIPTION 

The Berth Allocation Problem (BAP) stands as a globally recognized NP-hard combinatorial optimization problem 

encountered by all seaports worldwide [9]. Regarded as a pivotal optimization issue, the BAP can be categorized based 

on spatial/temporal considerations of berths and vessels [5]. Concerning spatial constrains, there are two types: discrete 

and continuous berth models. In the discrete berth model, the quayside is segmented to a limited number of docking 

spaces, with each berth accommodating a single vessel, and strict one-to-one allocation is observed. Conversely, the 

continuous berth model considers the whole quay itself as a single berth (there is no portioning along the quay) 

allowing vessels to moor at any position within the quay boundaries wherever empty spaces permit, as shown in 

Figures 2 and 3. Concerning temporal constrains, there are two types: static and dynamic berth model. In the static 

BAP, all vessels are presumed to have arrived at the harbor and be ready for service prior to plan the berth assignment, 

obviating the need for specified arrival times. Conversely, in the dynamic BAP, the timing of vessel arrivals is 

uncertain but their scheduled arrival times are predictable. Therefore, the vessels cannot berth before the expected 

arrival times [14]. The primary objective in solving the BAP is to allocate all vessels to available berths with minimal 

waiting time, while adhering to the following constraints [6, 15, 16]: 

  

• Every single berth can only serve a single ship at one time.  

• Any ship with a certain handling time can be allocated to any berth, taking into consideration that the ship’s 

handling time varies from one berth to another.  

• All ships with known arrival time can reach to the berth at any time regardless of its opening hours.  

• When a ship is anchored at a berth, it will stay at the berth depending on when the service handling is completed. 

  

The objective function of the BAP is calculated as indicated in Equation (1) [14]: 

 

  (𝒕𝒊
𝒌 − 𝒂𝒊 + 𝑷𝒊

𝒌  𝒙𝒋𝒋
𝒌

𝒋∈𝑵∪{𝒅}

)

𝒌∈𝑲𝒊∈𝑵

 

 

 

Where: 

• ia : the arrival timeeof vessel i 

• K : seteofeberths,  

• N: numbereof^vessels that will arriveeat the harbor,  

• : the handling timeeof vessel i ateberth k 

• : the berthing timeeof vessel i ateberth k 

• decision variable, =1 ifevessel j is servedeby^berthek immediately after vessel i 

 

 

(1) 
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  FIGURE 1. Berth allocation problem schematic of a container terminal 

FIGURE 2. Discrete berth allocation problem 

FIGURE 3. Continuous berth allocation problem. 
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3. HARMONY SEARCH ALGORITHM FOR THE BERTH ALLOCATION PROBLEM 

 The Harmony Search Algorithm (HSA), which introduced by Zong Woo Geem and Joon Woong Kim, stands out 

as a relatively recent metaheuristic approach [17]. HSA is novel optimization algorithm that inspired by modern-nature. 

HSA draws inspiration from the artistic practice of musical improvisation progression where musicians adjust their 

notes to achieve a pleasing harmony, to seek an optimal solution via recurrent trials, achieving the condition of 

harmony/pleasance aligned with artistic criteria. This parallels the optimization process's pursuit of an optimal solution, 

guided by an objective function. Within the music progress, a player selects and combines a diverse set of pitches based 

on prior knowledge, subsequently rendering these through musical instruments to attain an optimum harmonious 

musical expression. This procedure parallels an optimal design process for addressing optimization problems, wherein 

harmony is parallel to the optimization solution, and the improvisations resemble local and global search process [18].  

Like a bunch of musicians refining their harmonies through successive practices, the HSA enhances solution 

vectors iteratively by leveraging discovered candidate solutions during the solution construction phase. Iteratively, 

HSA creates a fresh harmony (solution) for a certain problem, mirroring the incremental development of musical 

harmonies in practice sessions. In the realm of musical improvisation, each player faces three potential choices when 

performing a composition [19]: (i) performing a well-known musical composition from memory, (ii) playing notes 

closely resembling a familiar composition (with slight pitch adjustments), or (iii) creating notes entirely at random. 

Analogously, HSA iteratively creates new solutions by following three guiding principles: (i) memory consideration, 

(ii) pitch adjustment, and (iii) random consideration. The parallelism between musical improvisation and optimization 

problems is depicted in Figure 4. The fundamental structure of HSA consists of 6 steps as shown in Figure 5.  

• Step #1: Initializing the parameters of HSA.  

• Step #2: Initializing the Harmony Memory (HM).  

• Step #3: Improvising a new solution (harmony). 

• Step #4: Updating Harmony Memory (HM).  

• Step #5: Verifying the termination criteria.  

• Step #6: Cadenza.  

 

 

 

 

 

Step #1: Initializing the parameters of HSA  

In this stage, the Harmony Search Algorithm's (HSA) parameters are set. is governed by four key parameters [10, 13]: 

• Harmony Memory Size (HMS). This parameter determines the maximum capacity for storing potential solutions 

(harmonies) in the Harmony Memory (HM). It resembles the population size in Evolutionary Algorithms (EAs). 

• Harmony Memory Consideration Rate (HMCR). Employed in the improvisation process (solution generation), 

HMCR guides the selection of the decision variable that will be used to generate the next solution. It determines 

whether the variable will be chosen from the HM (with a likelihood of HMCR). The remaining probability (1-

HMCR) allows for random selection of decision variables from the whole range of solution space. Usually HMCR 

falls within the range [0-1]. 

FIGURE 4. Flowchart of the components of the basic HSA 
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• Pitch Adjustment Rate (PAR). This is also utilized in the improvisation process. When a random number is below 

the PAR threshold, the selected decision variable from the HM is modified to its neighboring value; else, it remains 

unchanged. PAR is set within the value [0, 1]. 

• Number of Improvisation (NI). This parameter specifies the maximum number of times the HSA algorithm will run, 

and it serves as a termination criterion. 

 

Step #2: Initializing the Harmony Memory (HM) 

Harmony memory symbolized as a two-dimensional matrix that stores a collection of solutions produced through a 

randomized process. Each row in the array embodies a distinct solution vector. The total number of solutions in the HM 

corresponds to HMS. The solutions are arranged in order of their objective function values, which can be either 

maximizing or minimizing, as illustrated in Equation 2. 

 

 

HM = 

 
 
 
 
 

𝑥1
1 𝑥2

1 … 𝑥𝑁−1
1 𝑥𝑁

1

𝑥1
2 𝑥1

2 … 𝑥𝑁−1
2 𝑥𝑁

2

⋮ ⋮ ⋮ ⋮ ⋮ 
𝑥1

𝐻𝑀𝑆−1 𝑥2
𝐻𝑀𝑆−1 … 𝑥𝑁−1

𝐻𝑀𝑆−1 𝑥𝑁
𝐻𝑀𝑆−1

𝑥1
𝐻𝑀𝑆 𝑥2

𝐻𝑀𝑆 … 𝑥𝑁−1
𝐻𝑀𝑆 𝑥𝑁

𝐻𝑀𝑆  
 
 
 
 

 

 
 
 
 
 

𝑓(𝑥1)

𝑓(𝑥2)
⋮

𝑓(𝑥𝐻𝑀𝑆−1)

𝑓(𝑥𝐻𝑀𝑆)  
 
 
 
 

 
(2) 

 

 

Where x1, x2,…, xN-1, xN embody a solution vector, N is the number of possible solutions included in each solution 

vector, and f(x1), f(x2),…, f(xHMS) denote the objective function values for each solution vector. The Harmony Memory 

(HM) stores solutions (harmonies) in descending order of their objective function values f(X). In this article, the goal of 

the objective function is to reduce the overall amount of time ships spend at all berths in the port. The pseudocode of 

HM initialization is presented in Figure 6. 

 

FIGURE 5. Flowchart of the components of the basic HSA 
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Step #3: Improvising a new solution (harmony) 

During this phase, a new harmony vector, x’ = (x’1, x’2, x’3,…, x’N), which represents a potential solution, is improvised 

via a process called improvisation. This improvisation process follows three rules: (i) memory consideration, (ii) pitch 

adjustment, and (iii) random consideration. The selection mechanism used by HSA is depicted in Equation 3. 

 

 

𝑥𝑖
𝑁𝑒𝑤     

 
 

 

Equation 3 outlines the selection mechanism employed by the HSA for generating new harmony vectors, which 

represent potential solutions. This mechanism incorporates three distinct considerations: random selection, memory-

based selection, and pitch adjustment. As indicated in Equation 3, the value of variable i (i = 1, 2,..., N) is randomly 

selected from the available range {xi(1), xi(2),…, xi(ki)} with a probability of PRandom (random consideration). 

Alternatively, it is chosen from the group of values stored in the Harmony Memory (HM) with a probability of of 

PMemory (memory consideration). Additionally, there is a possibility of a slight adjustment by shifting to neighboring 

values xi(k ± m), with a probability of PPitch (pitch adjustment) [10]. 

 

(i) Memory consideration 

The creation of a new harmony, or solution, in the HSA is influenced by the value of the HMCR. A randomly 

generated number, R, within the range of [0 – 1] is generated. If R is less than the HMCR, the new solution is 

selected from the HM with a probability equal to the HMCR. This implies that the values of the decision 

variables (x’1) are chosen from the corresponding values kept in the HM (x1
1, x1

2, x1
3,…, x1

HMS). On the other 

hand, if R is greater than or equal to the HMCR, the new harmony is randomly picked from the entire available 

range (Xi), as demonstrated in Equation 4. 

 

𝑥′𝑖   
𝑥′𝑖 ∈  𝑥𝑖

1,𝑥𝑖
2,𝑥𝑖

3 ,… ,𝑥𝑖
𝐻𝑀𝑆  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐻𝑀𝐶𝑅

𝑥′𝑖 ∈ 𝑋𝑖                              𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝐻𝑀𝐶𝑅
                              (4) 

 Where x’i is a new value of xi, and Xi   is the whole available range. 

 

(ii) Pitch adjustment 

Each decision variable (xi) selected using the HMCR is evaluated to determine whether it requires fine-tuning or 

pitch adjustment. With a probability of PAR (PAR ∈ [0, 1]), the modification is implemented by applying the 

move operator to modify xi to its neighboring value. In the absence of this adjustment, xi remains unchanged 

with a probability of (1-PAR). This process introduces a slight perturbation to the decision variables, preventing 

the algorithm stuck in local minima and promoting further exploration of the search space, as shown in Equation 

(5).  

𝑥′𝑖   
𝑥′𝑖 + 𝑟𝑎𝑛𝑑  0,1 ∗ 𝐵𝑊       𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝐴𝑅                

𝑥′𝑖                                      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑃𝐴𝑅                
 

 
(iii) Random consideration 

Solutions which are not chosen from the HM are arbitrarily chosen from the whole available solution space 

(with a probability of 1-HMCR), as illustrated in Equation 3. This randomness fosters a broader spectrum of 

possible solutions, allowing the algorithm to discover a wider range of the search space and potentially discover 

the global optimum. The pseudocode of the improvisation process is depicted in Figure 7. 

 

 

begin  

  for i = (1 to HMS) do  
     Xi  = 0;   

     for j = (1 to N) do     //N is the number of decision variables  

         choose the value of xi
j randomly from the possible range  

         add xi
j to Xi 

     end for  

     calculate the f(xi)  //minimize total service time for all berths  
     add Xi to HM  

  end for  

  sort the solutions according to their objective function ascendingly 

end  

FIGURE 6. Pseudocode for initializing the harmony memory 

 

xi (k)  {xi(1), xi(2),…, xi(ki)}      w.p   PRandom 

xi (k)  {x1
i, x2

i, …, xi
HMS}            w.p   PMemory 

xi (k ± m)                w.p   PPitch

  

(3) 

(5) 
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Step #4: Updating Harmony Memory (HM)  

The newly generated solution vector (x’ = x’1, x’2, x’3,.., x’N).) is evaluated using the objective function f(x). If the new 

solution surpassed the current solutions in terms of quality, it is added to the HM by substituting the worst solution 

(updating the HM). Subsequently, the HM is ordered to ensure that the new harmony occupies the appropriate location 

based on its quality. Conversely, if the newly generated solution fails to surpass existing solutions, it is ignored. Figure 

8 shows the pseudocode of updating the HM. 

 

 

 

 

 

 

 

 

 
 

 

Step #5: Verifying the termination criteria 

At this point, it is determined if the HSA has reached its stopping criterion. If the termination criterion has been met 

(i.e., the max number of iterations has been exceeded), HSA terminates. Otherwise, the updating and improvisation 

processes, as described in stage three and four, are reiterated till the termination condition is met. 
 

Step #6: Cadenza 

A cadenza is a virtuoso musical composition typically performed towards the end of a piece, showcasing the 

performer's improvisation skills and aiming to create the most pleasing harmonic effect. Similar to this musical 

concept, a cadenza in the HSA represents the final stage in the search process aiming to identify the top solution. 

During this stage, the HSA retrieves and yields the highest-quality solution discovered and kept in the harmony 

memory according to the objective function value f(x). This solution represents the culmination of the algorithm's 

efforts to navigate the search space and uncover the most optimal solution. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to investigate the standard HSA’s efficacy in solving the BAP, the proposed HSA is evaluated using the 

BAP benchmark (I3 dataset) which contains 30 instances (represented as i1 to i30) derived from real-world data from 

the port of Gioia Tauro in Italy and generated randomly by Cordeau et al. in 2005 [15]. Each instance contains 60 

vessels and 13 berths. The HSA was implemented using C# programming language performed on a laptop (Intel® Core 

i5 CPU @ 3.40GHz with 12 gigabyte RAM) operating under Windows 11 (64-bit) operating system. The efficacy of 

the HSA results is evaluated in comparison to recent algorithms obtained from earlier studies in the literature, i.e., 

Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Bird Mating Optimizer (BMO) [6, 14]. In this paper, 

the HSA was executed 35 independent runs for each instance. The rationale behind conducting the proposed algorithms 

35 time is to secure a consistent measure of algorithm reliability and facilitate a sturdy statistical examination of 

algorithm performance [14, 20, 21]. 

FIGURE 8. Pseudocode of updating the HM 

FIGURE 7. Pseudocode of improvisation a new solution (harmony) 
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Owing to the stochastic character of metaheuristic approaches, each problem domain necessitates an extra careful 

setting of the algorithm parameter values. Since there has been no investigation in the literature for the parameter value 

settings of HSA when it applies to solve BAP, a number of preliminary experimentations was run to find suitable 

parameter values that produce high-quality results. There are four parameters that HSA has: HMCR, HMS, PAR, and 

NI. According to the preliminary experiments carried out, the best parameter settings of the standard HSA for BAP 

(which are discovered after some preliminary experiments) are exhibited in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 illustrates the results obtained by the standard HSA tested on the I3 datasets. For each tested instance, the 

best solution (Best), average solution (Avrg), standard deviation (Stdv) and the relative percentage deviation (RPD) of 

the results generated by the HSA algorithm for all instances of the BAP are reported. The RPD is calculated as {(BOR - 

BKR)/BKR * 100%}, where BOR is the best obtained result from the comparing algorithms and BKR is the best 

results found in the scientific literature. Figure 9 draws the results showed in Table 2, which demonstrates the analysis 

of the range among BKR, Best and Avrg.  

According to the results reported in Table 2, these results demonstrate that the standard HSA obtained promising 

results. It obtained competitive average results on most tested instances and produced a small standard deviation for 

nearly all BAP instances. This proves that HSA is a promising method for solving BAP. The box-whisker plot of 

solutions distribution for six instances of BAP (i01, i05, i10, i15, i20 and i25) over 35 runs is plotted to investigate the 

distribution of solutions obtained by the standard HSA, as described in Figure 10. 

 

 

Table 2. Results obtained by the standard HSA for solving BAP 

Instance BKR Best Avrg Stdv RPD Instance BKR Best Avrg Stdv RPD 

i01 1409 1428 1554.8 40.47 1.35% i16 1364 1409 1545.7 42.56 3.30% 

i02 1261 1263 1382.9 32.67 0.16% i17 1283 1333 1465.1 44.41 3.90% 

i03 1129 1144 1232.3 29.94 1.33% i18 1345 1363 1489.1 38.83 1.34% 

i04 1302 1333 1418.7 39.05 2.38% i19 1367 1396 1530.5 41.21 2.12% 

i05 1207 1219 1311.3 36.50 0.99% i20 1328 1349 1488.7 39.12 1.58% 

i06 1261 1276 1412.9 36.74 1.19% i21 1341 1401 1502.9 35.58 4.47% 

i07 1279 1298 1401.9 37.48 1.49% i22 1326 1389 1514.8 42.36 4.75% 

i08 1299 1343 1478.5 40.31 3.39% i23 1266 1284 1417.7 35.23 1.42% 

i09 1444 1465 1595.8 41.78 1.45% i24 1260 1266 1392.5 34.27 0.48% 

i10 1213 1225 1338.5 32.78 0.99% i25 1376 1475 1638.4 40.85 7.19% 

i11 1368 1419 1536.8 44.48 3.73% i26 1318 1341 1477.3 37.01 1.75% 

i12 1325 1356 1486.4 38.41 2.34% i27 1261 1297 1397.4 39.32 2.85% 

i13 1360 1365 1504.9 35.31 0.37% i28 1359 1375 1512.5 36.67 1.18% 

i14 1233 1248 1372.1 36.80 1.22% i29 1280 1293 1413.1 36.54 1.02% 

i15 1295 1305 1442.6 48.13 0.77% i30 1344 1380 1524.1 36.20 2.68% 

 

 

Table 1. Parameter settings for the standard HSA (based on the best average results) 

Parameter Value 

Harmony Memory Size (HMS) 40 

Harmony Memory Consideration Rate (HMCR) 0.8 

Pitch Adjustment Rate (PAR)  0.2 

Number of Improvisations (NI) 800000 
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The plot shows that there are some instances in which the distribution of solutions is symmetric; The solutions 

exhibited a symmetrical distribution centered at the median (i.e., i05, i20). Regarding instances i01 and i10, the 

distribution of solution was skewed to the lower end (best obtained results). Finally, the solutions distribution of 

instances i15 and i25 was skewed to the upper end (worst solution). According to this plot, it is apparent that (for the 

majority of instances) HSA is a consistent algorithm in solving BAP. Table 3 exhibits a comparison between the results 

attained by the HSA against recent metaheuristic algorithms obtained from scientific literature. The highest outcomes 

are highlighted in boldface. Figure 11 (a), (b) and (c) show a comparison between HSA and other metaheuristics (in 

terms of RPD, Avrg and Stdv, respectively). Thus, there is an evidence that HSA has outperformed the BMO, PSO and 

GA in almost all instances in terms of the relative percentage deviation (26 instances out of 30). The average RPDs of 

the HSA, BMO, PSO and GA are 2.11, 6.24, 3.84 and 12.65, respectively which indicates that the results attained by 

HSA (over 35 executions) are comparatively not too far from the best-known results (BKR) (the BKR plus the BAP I3 

dataset can be found in [7]).   

Moreover, HSA surpassed the BMO and GA regarding the best results obtained and the average results throughout 

most instances (except instances i17 and i25 in GA). Pertaining to the standard deviation, HSA outperformed BMO and 

GA throughout all instances, and attained 11 instances out of 30, which is much better than the PSO. The average 

standard deviations of HSA, BMO, PSO and GA are 38.37, 222.18, 36.21 and 56.29, respectively, altogether signifying 

that the HSA is much more stable and consistent than BMO and GA (only PSO is better than HSA in terms of Stdv).  

FIGURE 9. The results of using the standard HSA for solving BAP 

FIGURE 10. The box-whisker plot of solution distribution of HSA for 6 instances of BAP 
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Table 3. Comparison results of HSA and other metaheuristics for solving I3 dataset 

Instances 
HSA BMO PSO GA 

Avrg Stdv RPD Avrg Stdv RPD Avrg Stdv RPD Avrg Stdv RPD 

i01 1554.8 40.47 1.35 1893 354.2 7.95 1552.8 31.35 5.82 1637.8 63 16.24 

i02 1382.9 32.67 0.16 1491 197.91 5.79 1365.3 33.82 5 1421.4 57.2 12.72 

i03 1232.3 29.94 1.33 1305 131.95 3.81 1211.6 35.46 3.37 1235.5 42.3 9.43 

i04 1418.7 39.05 2.38 1572 273.71 4.15 1395.2 38.66 2.92 1429.1 36.9 9.76 

i05 1311.3 36.50 0.99 1424 189.29 2.49 1273.5 24.32 2.32 1325.5 49.6 9.82 

i06 1412.9 36.74 1.19 1492 189.23 5.79 1353.5 26.2 3.89 1415.4 43.l 12.24 

i07 1401.9 37.48 1.49 1455 71.98 7.04 1356.7 28.68 1.8 1406.7 45.7 9.98 

i08 1478.5 40.31 3.39 1533 134.01 6.39 1415.7 41.29 3.7 1478.9 55 13.85 

i09 1595.8 41.78 1.45 1735 266.08 4.71 1554.7 32.34 4.5 1620.3 58.6 12.21 

i10 1338.5 32.78 0.99 1531 283.86 5.03 1314.5 33.27 2.39 1383.8 66.6 14.08 

i11 1536.8 44.48 3.73 1714 279.79 9.21 1481.4 31.69 3.95 1553.9 55.2 13.59 

i12 1486.4 38.41 2.34 1777 328.52 8.23 1449.2 36.38 4 1493.1 54.6 12.69 

i13 1504.9 35.31 0.37 1612 167.49 6.25 1466.9 36.94 2.5 1509.3 51.1 10.98 

i14 1372.1 36.80 1.22 1604 288.49 7.06 1307.5 31.8 2.6 1399.8 50.7 13.53 

i15 1442.6 48.13 0.77 1664 274.43 5.71 1395.7 37.86 3.94 1449.3 57.9 11.92 

i16 1545.7 42.56 3.30 1974 355.87 9.24 1508.1 43.69 6.3 1599.4 73.9 17.26 

i17 1465.1 44.41 3.90 1428 68.85 4.75 1343.7 23.09 1.71 1378.7 44.6 7.46 

i18 1489.1 38.83 1.34 1528 84.37 5.2 1458.7 73.36 4.91 1500.7 65.5 11.58 

i19 1530.5 41.21 2.12 1640 139.78 7.68 1507.4 49.35 4.24 1576.6 49.5 15.33 

i20 1488.7 39.12 1.58 1631 180.85 6.48 1436.1 35.62 3.69 1528.1 67.5 15.07 

i21 1502.9 35.58 4.47 1631 252.75 4.85 1448.3 30.93 4.18 1514.2 63.6 12.92 

i22 1514.8 42.36 4.75 1755 344.73 4.9 1452.4 37.43 4.68 1529.5 50.7 15.35 

i23 1417.7 35.23 1.42 1527 195.61 8.93 1378.7 37.76 5.21 1422.2 47.3 12.34 

i24 1392.5 34.27 0.48 1501 202.77 6.35 1357.4 35.85 3.41 1404.2 41.7 11.44 

i25 1638.4 40.85 7.19 1862 345.47 7.27 1492.9 39.64 3.34 1547.4 43.6 12.46 

i26 1477.3 37.01 1.75 1650 233 4.63 1432.3 32.52 5.16 1484.7 61 12.65 

i27 1397.4 39.32 2.85 1440 95.11 6.98 1352.2 36.99 3.97 1406.1 54.7 11.51 

i28 1512.5 36.67 1.18 1717 240.34 7.58 1478.6 47.67 3.31 1542.8 62.8 13.52 

i29 1413.1 36.54 1.02 1575 256.3 4.69 1377.9 29.09 3.13 1449.3 54.6 13.23 

i30 1524.1 36.20 2.68 1675 238.63 7.96 1467.9 33.18 5.36 1538.3 74.6 14.46 

Average 1459.3 38.37 2.11 1611 222.18 6.24 1412.9 36.21 3.84 1472.7 56.29 12.65 

 

Ultimately, it becomes apparent that the overall results achieved in Table 3 have proven that the HSA is promising 

and competitive, and that it surpasses some other algorithms that have solved the same dataset. The results were also 

found to be very near to the BKR (the RPD is very close to zero). The favourable results produced by the HSA are 

testament to the advantage of using the HSA in solving BAP, supporting the above-mentioned hypothesis and 

obviously answering the query of whether the HSA is able to tackle the BAP efficiently. 
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5. CONCLUSION AND FUTURE RESEARCH 

BAP is one of the renowned challenging combinatorial optimization problems which serves a crucial task in 

maritime transportation systems. Since BAP is an NP-hard problem, which is difficult to resolve for optimality in a 

reasonable amount of time, Exact algorithms are not applicable for this kind of large-scale real-world problems. This 

study looks into the application of HSA for tackling the BAP, as it has never been applied to tackle the BAP until the 

time of writing. This motivates us to investigate the performance of HSA for this task. The suggested HSA was 

assessed using (I3) benchmark dataset from the literature and compared with latest algorithms found in the literature to 

confirm its performance. Experimental results evidenced that the HSA is a promising, competitive, and that it had 

surpassed some other algorithms that solved the same dataset, other than the fact that the results were very near to the 

BKR. The favorable results produced by the HSA prove that the HSA is a good alternative in getting high-quality 

solutions for solving BAP. 

Conversely, according to the results presented, the HSA (like other population-based metaheuristics) suffers from 

slow convergence due to the lack of exploitation (intensification) capabilities. In the future, it is recommended that the 

HSA is hybridized with single-based metaheuristic for enhancing its performance. Also, it is beneficial if the HSA is 

applied on different BAP datasets for more consistency. One more potential direction is to study the possibility of 

solving the HSA on the continuous BAP which is very close to the real-world operations. 
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