

59 *Corresponding author: author@organization.edu.co
 http://journal.esj.edu.iq/index.php/IJCM

Iraqi Journal for Computer Science and Mathematics

Journal Homepage: http://journal.esj.edu.iq/index.php/IJCM

e-ISSN: 2788-7421 p-ISSN: 2958-0544

Face Detection Performance Using CNNs and Bug Bonuty

Program (BBP)

Yasmin Makki Mohialden 1 ,Saba Abdulbaqi Salman 2* , Nadia Mahmood

Hussien3

1 Mustansiriyah University, Baghdad, Iraq
2 Aliraqia University, Baghdad, Ira
3 Mustansiriyah University, Baghdad, Iraq

*Corresponding Author: Yasmin Makki Mohialden

DOI: https://doi.org/10.52866/ijcsm.2024.05.02.006

Received September 2023; Accepted January 2024; Available online March 2024

1. INTRODUCTION

 Although bug bounty schemes are not fresh to the field of software creation, more businesses and open source groups

are depending on outside contractors to evaluate their software's security in exchange for payment. On the other hand,

empirical data regarding the traits of bug bounty program participants is scarce. Programs known as bug bounty’s provide

an innovative way for companies to crowdsource the safety of software as well as for security experts to get paid

appropriately for discovering flaws in software. On the other hand, not much is known about the bug bounty schemes'

incentives and how they promote participation and new bug findings. Face identification is essential in computer vision

and has various applications. CNNs enhance face recognition, and this work evaluates the fake face recognition library's

mistake reward system. Bug bounties reward ethical hackers for reporting application flaws to developers [1], [2]. Facial

recognition software vulnerability study [3], [4]. A developer examines and pays ethical hackers who utilize exposure to

find software security flaws [1], [5]. Bug Bounty finds and patches software security problems, including facial

recognition software, to strengthen it [6].

 CNN advancements have accelerated face identification, a significant computer vision technology with many

applications [1]. Face recognition applications presume automatic face detection in many visual conditions [3].

Traditional approaches are imprecise and unreliable, thus researchers developed a CNN-based face identification

algorithm [6]. A bug bounty scheme finds and fixes library vulnerabilities [6].

 Developers compensate ethical hackers for revealing flaws. The CNN-based strategy and Bug Bounty campaign

improve library security [6]. Finally, CNN-based models enhanced face identification accuracy and robustness, while

Bug Bounty campaigns fixed library bugs.

ABSTRACT:

Bug bounty schemes make use of outside ethical hackers to find and fix a variety of security flaws, guaranteeing

quicker and more affordable problem solving. Better confidence in and image of the company in the cybersecurity

space, faster solving issues, and increased community collaboration are some of its results. Computer vision relies on

face detection, which has several uses. This article uses convolutional neural networks (CNNs) and an error reward

algorithm in the facial recognition simulation library to enhance face detection. Trainers trained CNNs to detect faces

from other visual components and extract human facial traits, making them powerful facial identification tools. These

networks classify and extract face characteristics automatically, obtaining approaching 100% identification rates.

CNNs have greater identification rates and easier face-image extraction than earlier methods. Network architecture

determines its performance, transcending machine learning methodologies. This article suggests a bug reward scheme

to discover and resolve bugs in the face recognition library. The program has helped Google find flaws in its

intelligent systems, including model manipulation and adversarial assaults. These activities enhance AI safety and

security studies, highlight possible concerns, and promote AI safety. CNN-based facial recognition models enhance

accuracy and offer advantages over previous approaches. The CNN-based method and Bug Bounty software

improved the facial recognition library.

Keywords: Bug Bounty program, vulnerabilities, robustness, convolutional neural networks (CNNs), face detection.

http://journal.esj.edu.iq/index.php/IJCM
https://orcid.org/0000-0003-2401-0505
https://orcid.org/0000-0002-1259-8252
https://orcid.org/0000-0002-2061-2149

Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67

 60

 The Contribution: This study introduces CNN-based face identification and evaluates Bug Bounty, a novel facial

recognition library vulnerability discovery and patching method. The combination of bug bounty with CNN technology

makes this effort more engaging and comprehensive in enhancing computer vision security and performance.

 Many applications require good computer vision face identification, yet traditional approaches may be incorrect.

This paper solves these vulnerabilities utilizing a bug reward program and CNN-based approach to secure the face

recognition library.

 The Outline of the Paper: Section Two: Literature review. Section Three: Methodology. Section Four: The proposed

methodology. Section Five: Conclusion and recommendations for future work.

2. RELATED WORKS

 The following are some related works:

 This article [7] presents A bug bounty case study showing how they may find software security issues. Bug bounty

research and corporate security advantages will be assessed. Successful bug bounty schemes that found important

vulnerabilities are evaluated qualitatively. Bug bounty hunting appears to find security flaws in gadgets, mobile apps,

network protocols, and Internet apps. Skilled security researchers are valued .

 In [8], digital platforms implement Bug Bounty Programs (BBPs) to improve software reliability following a rise in

security breaches of third-party applications. BBPs help platforms and sellers but may increase prices and impact adoption

incentives for suppliers, according to the report. A methodology is presented for evaluating the strategic decisions of

platforms and external suppliers during BBP launch and engagement. Security breach loss and vendor investment

efficiency are key variables in these choices. The article found that the use of BBP is only balanced when the potential

loss is high and the investment efficiency is low. In some settings, BBPs may reduce software stability, platform

reliability, and end-user experience, making them socially disadvantageous .

 In [9], user confidence in the security of online data is essential to the smooth operation of digital markets and

societies, where security is fundamental. Given the complexity and cost of cybersecurity threats, more companies and

governments are using bug bounty programs (BBPs) to improve cybersecurity. Hackers are paid by BBP to reveal system

vulnerabilities.

 In [10], this study evaluates whether a bug bounty program reduces data breaches and how a company's appetite for

risk affects this communication. Study reveals that bug bounty schemes encourage data breaches. A bug bounty program

reduces data breaches for risk-averse companies, although this benefit is reduced by risk aversion. The study adds to the

knowledge on crowdsourcing and cybersecurity and provides practitioners with useful tips.

 In[11], the paper covers bug bounty services like Hacker One that outsource vulnerability disclosure to hackers. The

paper outlines the costs and benefits for companies and hackers. Running a bug bounty program for a year costs less than

hiring two software developers, highlighting its cost-efficiency in resolving vulnerabilities.

3. PROPOSED SYSTEM

 The general steps of the proposed methodology are:

1. Data Preparation:

• Gather a dataset of approved facial images for training.

• Data set preprocessing, including resizing, normalization and data enhancement.

2. CNN Model Structure:

• Determine the structure of a convolutional neural network (CNN) suitable for face detection.

• Create layers for convolution, pooling, and fully connected layers.

• Add activation functions, such as ReLU.

• Compile the model using appropriate loss functions and optimizers.

3. Model Training:

• Split the data set into training and validation sets.

• Train the CNN model on the training data.

• Monitor training progress and adjust hyper parameters as needed.

Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67

 61

4. Evaluation:

• Evaluates the trained model on a separate test dataset.

• Calculate precision, precision, recall, and F1 score for face detection. Rephrase it linguistically and

replace it with synonyms

 The steps as shown in Figure 1.

3.1 Implementing a Bug Bounty Program in a Face Detection Library Preparation and Implementation

Steps:

3.1.1 Setting up the Emulation Library:

• Create a Python library that simulates the face detection function.

• Include known vulnerabilities or issues in the library code.

3.1.2 Error Reporting Mechanism:

• Developed a reporting system that allows users to submit bug reports.

• Include a form for users to explain issues and upload code or sample data.

3.1.3 Bug Tracking:

• Create a bug-tracking system to record and categorize incoming bug reports.

• Assign severity levels to each reported issue.

3.1.4 Bug Fix:

• Develop a process to address reported errors.

• Prioritize errors and fix them based on their severity.

• Update library code with bug fixes.

3.1.5 Bug Bounties:

• Set rewards or incentives for users who report valid vulnerabilities.

• Implement a mechanism to distribute rewards to successful informants.

3.1.6 Documentation:

• Provide clear documentation for the library, including how to report bugs and participate in the Bug

Bounty program.

 The use case of the proposed method is shown in Figure 2

Data

Preparation
Evaluation

Model

Training

CNN Model

Architecture

FIGURE 1. General Diagram for Face Detection

Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67

 62

3.2 Evaluating the effectiveness of a bug bounty program in detecting defects in facial recognition algorithms :

This approach replicates bug bounty via false facial detection. This study tests a bug bounty program's

facial recognition algorithm defect detection. The system contains face detection, quality evaluation metrics,

bug bounty simulation, vulnerability assessment, and results presentation simulation libraries.

3.2.1 Face detection simulation library:

This custom library simulates facial detection. To simulate real-world facial recognition systems, this

library has intended shortcomings. The library correctly and incorrectly recognizes facial positions.

3.2.2 Quality measurement standards:

The quality metrics system assesses bug bounty performance. It assesses detection accuracy and

completeness using precision and recall. Accuracy is the percentage of faces properly identified, whereas recall

is the percentage of faces discovered.

3.2.3 Simulation Bug Bounty Technology:

This method employs a face detection library and real faces with known locations. The error reward

simulation uses the simulation library to test face detection. Comparing recognized faces to actual faces yields

accuracy and recall measurements.

3.2.4 Vulnerability assessment:

After detection, specific criteria are used to evaluate the vulnerability. Vulnerabilities are identified if the

number of recognized faces exceeds a specified minimum, indicating flaws in the detection algorithm.

FIGURE 2. Use Case Diagram for the Proposed Method

Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67

 63

3.2.5 Results:

 The results of the bug bounty simulation are presented in the form of text and images. The bug bounty

program aims to report precision, recall, and vulnerability. The performance of the algorithm is demonstrated

by displaying detection images that show squares around faces.

3.2.6 Efforts to reward repetitive errors:

 Ongoing efforts are being made to develop a bug bounty program to test the library's performance. Face

detection simulation, quality metrics, vulnerability assessment, and results display are included in each iteration.

Figure 3 shows the class diagram of the proposed software.

3.3 Pseudo-code Representation of the Described Process

FIGURE 3. Class Diagram for the Proposed Program

Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67

 64

Step 1: Face Detection Library Simulation

class FaceDetectionLibrary:

 method simulate_face_detection(image):

 # Simulate face detection algorithm with intentional flaws

 # Identify true positives and false positives in face detection

 // Implementation details omitted

Step 2: Error Reporting Mechanism

class ErrorReportingSystem:

 method report_errors(user_description, code_samples):

 # Allow users to describe issues and upload relevant code samples

 // Implementation details omitted

Step 3: Error Tracking System

class ErrorTrackingSystem:

 variable error_reports

 method __init__():

 error_reports = []

 method track_errors(user_report):

 # Record and categorize error reports based on severity

 // Implementation details omitted

Step 4: Error Resolution Process

class ErrorResolutionProcess:

 method prioritize_errors():

 # Prioritize errors based on severity levels

 // Implementation details omitted

 method fix_errors():

 # Implement fixes for identified errors in the face detection algorithm

 // Implementation details omitted

Step 5: Bug Bounty Rewards

class BugBountyRewards:

 method determine_rewards(valid_error_reports):

 # Define a mechanism for distributing rewards to successful error reporters

 // Implementation details omitted

Step 6: Documentation

class Documentation:

 method create_documentation():

 # Include rules on error reporting and Bug Bounty contribution

 // Implementation details omitted

Main Program

Instantiate objects for each step

face_detection_library = FaceDetectionLibrary()

error_reporting_system = ErrorReportingSystem()

error_tracking_system = ErrorTrackingSystem()

error_resolution_process = ErrorResolutionProcess()

bug_bounty_rewards = BugBountyRewards()

documentation = Documentation()

Simulate the Bug Bounty process

image = load_test_image()

detected_faces = face_detection_library.simulate_face_detection(image)

user_report = error_reporting_system.report_errors("Found issues in face detection", code_samples)

error_tracking_system.track_errors(user_report)

error_resolution_process.prioritize_errors()

error_resolution_process.fix_errors()

bug_bounty_rewards.determine_rewards(valid_error_reports)

documentation.create_documentation()

Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67

 65

3.4 Testing environment for bug reward strategies in a face detection simulation library

This method works well for controlled bug bounty program evaluations. False positives and negatives during detection

help evaluate bug reward methods and find security vulnerabilities. Real-world face detection may be analyzed and

improved using this method. Frequent and comprehensive evaluations reveal ways to improve bug bounty and program

performance in a controlled setting. Table 1 shows these result. Table 2 Illustrates the combined results of face

detection and bug bounty simulation

Attempt 1

Quality Metrics Precision: 0.00 Recall: 0.00

No vulnerabilities were found.

Attempt 2

Quality Metrics Precision: 1.00 Recall: 1.00

No vulnerabilities were found.

Attempt 3

Quality Metrics Precision: 1.00 Recall: 1.00

Vulnerabilities found! Could you report them?

Attempt 4

Quality Metrics Precision: 0.00 Recall: 0.00

No vulnerabilities were found.

Attempt 5

Quality Metrics Precision: 1.00 Recall: 1.00

Vulnerabilities found! Could you report them?

Table 2:- Illustrates the combined results of face detection and bug bounty simulation

Image Bug Bounty Report:

Detected 2

faces in the

image.

Bug: False

positive in face

detection

Status: not a

bug

Reward: $0

Bug: Memory

leak in face

detection

algorithm

Status: high

severity

Reward: $200

Bug:

Localization

issue in error

messages

Status: medium

severity

Reward: $100

Table 1. Simulated Face Detection Library Results

Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67

 66

Detected 1

faces in the

image.

Bug Bounty

Report:

Bug: False

positive in face

detection

Status: not a

bug

Reward: $0

Bug: Memory

leak in face

detection

algorithm

Status: high

severity

Reward: $200

Bug:

Localization

issue in error

messages

Status: medium

severity

Reward: $100

Detected 4

faces in the

image.

Bug: False

positive in face

detection

Status: not a

bug

Reward: $0

Bug: Memory

leak in face

detection

algorithm

Status: high

severity

Reward: $200

Bug:

Localization

issue in error

messages

Status: medium

severity

Reward: $100

3.5 Conclusion and future work

The suggested face detection library simulation method evaluates error reward programs with high accuracy. The

efficiency of bug bounty schemes may be assessed using simulation technologies and real-world occurrences. Recall and

accuracy assess detection quality and efficiency.

Accuracy is defined as the ratio of positive detections (either true or false) relative to all detected vulnerabilities. The

recall metric reflects the percentage of true vulnerabilities, whether detected or not, that lead to true positive outcomes

out of all good scenarios. This evaluation adds complexity to measuring the success of a bug bounty program.

Regarding the flexibility of the face detection algorithm, a vulnerability assessment is included to indicate technical issues

that improve the security of the system. A bug bounty effort is to frequent evaluation, which makes it easier to measure

the success of the program and stabilize the library. Presenting the results of the bug bounty program through graphs and

text reports helps understand how it detects flaws in the facial recognition algorithm.

Face detection systems are in demand in social media and security systems, hence it is suggested to enhance them:

1. Improving the Simulation Environment: Complex factors like illumination and viewing angles improve simulation

accuracy.

2. Improving Assessment Criteria: Adding new criteria to better assess bug bounty program performance.

3. Expanding Security Vulnerabilities: Analyze and evaluate more security vulnerabilities to improve face detection

system security.

4. Using Machine Learning: Using machine learning to increase bug reward and detection accuracy.

Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67

 67

Funding

None

ACKNOWLEDGEMENT

Mustansiriyah University (https://uomustansiriyah.edu.iq/) and Al-Iraqia University in Baghdad, Iraq, supported

this effort

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] Yicheng An, Jiafu Wu, Chang Yue "CNNs for Face Detection and Recognition", CS231n, Stanford University /

Department of Electrical Engineering Stanford University, 2017.

[2] Hiba Hameed Ali, Jolan Rokan Naif, Waleed Rasheed Humood A New Smart Home Intruder Detection System Based

on Deep Learning https://mjs.uomustansiriyah.edu.iq/index.php/MJS/article/view/1267, Volume 34, Issue 2, 2023

[3] Fean Zhang, Xinyu Fan, Guo Ai, Jianfei Song, Yongquang Qin, Jiahong " Accurate Face Detection for High

Performance", AInnovation Technology Ltd, Beijing, China, 2019.

[4] Sarab M. Taher, Mustafa Ghanim, Chen Soong Der, Applied Improved Canny Edge Detection for Diagnosis Medical

Images of Human Brain Tumors, https://doi.org/10.23851/mjs.v34i4.1392, Volume 34, Issue 4, 2023

[5] Mohammed Haqi Al-Tai, Bashar M. Nema, Ali Al-Sherbaz " Deep Learning for Fake News Detection: Literature

Review ", DOI: http://doi.org/10.23851/mjs.v34i2.1292 Volume 34, Issue 2, 2023.

 [6] Deisy Chaves, Eduardo Fidalgo, Enrique Alegre, Rocío Alaiz-Rodríguez, Francisco Jáñez-Martino, George

Azzopardi "Assessment and Estimation of Face Detection Performance Based on Deep Learning for Forensic

Applications", published in the 9th International Conference on Imaging for Crime Detection and Prevention (ICDP-19),

London, UK, 16–18 December 2019.

[7] Maulani, I. E., & Anggraeni, R. (2023). Bug Bounty Hunting: A Case Study of Successful Vulnerability Discovery

and Disclosure. Devotion: Journal of Research and Community Service, 4(8), 1735-1740.

[8] Tianlu, Z. H. O. U., Ma, D., & NAN, F. (2023). The Use of Bug Bounty Programs for Software Reliability

Improvement.

[9] Wachs, J. (2022). Making markets for information security: the role of online platforms in bug bounty programs.

arXiv preprint arXiv:2204.06905.

[10] Aaltonen, A., & Gao, Y. (2021). Does the Outsider Help? The Impact of Bug Bounty Programs on Data Breaches.

The Impact of Bug Bounty Programs on Data Breaches (August 20, 2021). Fox School of Business Research Paper.

[11] Walshe, T., & Simpson, A. (2020, February). An empirical study of bug bounty programs. In 2020 IEEE 2nd

International Workshop on Intelligent Bug Fixing (IBF) (pp. 35-44). IEEE.

https://doi.org/10.23851/mjs.v34i4.1392

