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1. INTRODUCTION 

     Although bug bounty schemes are not fresh to the field of software creation, more businesses and open source groups 

are depending on outside contractors to evaluate their software's security in exchange for payment. On the other hand, 

empirical data regarding the traits of bug bounty program participants is scarce. Programs known as bug bounty’s provide 

an innovative way for companies to crowdsource the safety of software as well as for security experts to get paid 

appropriately for discovering flaws in software. On the other hand, not much is known about the bug bounty schemes' 

incentives and how they promote participation and new bug findings. Face identification is essential in computer vision 

and has various applications. CNNs enhance face recognition, and this work evaluates the fake face recognition library's 

mistake reward system. Bug bounties reward ethical hackers for reporting application flaws to developers [1], [2]. Facial 

recognition software vulnerability study [3], [4]. A developer examines and pays ethical hackers who utilize exposure to 

find software security flaws [1], [5]. Bug Bounty finds and patches software security problems, including facial 

recognition software, to strengthen it [6].  

       CNN advancements have accelerated face identification, a significant computer vision technology with many 

applications [1]. Face recognition applications presume automatic face detection in many visual conditions [3]. 

Traditional approaches are imprecise and unreliable, thus researchers developed a CNN-based face identification 

algorithm [6]. A bug bounty scheme finds and fixes library vulnerabilities [6].  

        Developers compensate ethical hackers for revealing flaws. The CNN-based strategy and Bug Bounty campaign 

improve library security [6]. Finally, CNN-based models enhanced face identification accuracy and robustness, while 

Bug Bounty campaigns fixed library bugs.  
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quicker and more affordable problem solving. Better confidence in and image of the company in the cybersecurity 
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face detection, which has several uses. This article uses convolutional neural networks (CNNs) and an error reward 
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intelligent systems, including model manipulation and adversarial assaults. These activities enhance AI safety and 

security studies, highlight possible concerns, and promote AI safety. CNN-based facial recognition models enhance 

accuracy and offer advantages over previous approaches. The CNN-based method and Bug Bounty software 

improved the facial recognition library. 

Keywords: Bug Bounty program, vulnerabilities, robustness, convolutional neural networks (CNNs), face detection.   

http://journal.esj.edu.iq/index.php/IJCM
https://orcid.org/0000-0003-2401-0505
https://orcid.org/0000-0002-1259-8252
https://orcid.org/0000-0002-2061-2149


Yasmin Makki Mohialden et al., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 59-67 

 

 60 

        The Contribution: This study introduces CNN-based face identification and evaluates Bug Bounty, a novel facial 

recognition library vulnerability discovery and patching method. The combination of bug bounty with CNN technology 

makes this effort more engaging and comprehensive in enhancing computer vision security and performance.  

        Many applications require good computer vision face identification, yet traditional approaches may be incorrect. 

This paper solves these vulnerabilities utilizing a bug reward program and CNN-based approach to secure the face 

recognition library.  

        The Outline of the Paper: Section Two: Literature review. Section Three: Methodology. Section Four: The proposed 

methodology. Section Five: Conclusion and recommendations for future work. 

2.  RELATED WORKS  

       The following are some related works: 

       This article [7] presents A bug bounty case study showing how they may find software security issues. Bug bounty 

research and corporate security advantages will be assessed. Successful bug bounty schemes that found important 

vulnerabilities are evaluated qualitatively. Bug bounty hunting appears to find security flaws in gadgets, mobile apps, 

network protocols, and Internet apps. Skilled security researchers are valued . 

        In [8], digital platforms implement Bug Bounty Programs (BBPs) to improve software reliability following a rise in 

security breaches of third-party applications. BBPs help platforms and sellers but may increase prices and impact adoption 

incentives for suppliers, according to the report. A methodology is presented for evaluating the strategic decisions of 

platforms and external suppliers during BBP launch and engagement. Security breach loss and vendor investment 

efficiency are key variables in these choices. The article found that the use of BBP is only balanced when the potential 

loss is high and the investment efficiency is low. In some settings, BBPs may reduce software stability, platform 

reliability, and end-user experience, making them socially disadvantageous . 

       In [9], user confidence in the security of online data is essential to the smooth operation of digital markets and 

societies, where security is fundamental. Given the complexity and cost of cybersecurity threats, more companies and 

governments are using bug bounty programs (BBPs) to improve cybersecurity. Hackers are paid by BBP to reveal system 

vulnerabilities. 

       In [10], this study evaluates whether a bug bounty program reduces data breaches and how a company's appetite for 

risk affects this communication. Study reveals that bug bounty schemes encourage data breaches. A bug bounty program 

reduces data breaches for risk-averse companies, although this benefit is reduced by risk aversion. The study adds to the 

knowledge on crowdsourcing and cybersecurity and provides practitioners with useful tips. 

      In[11], the paper covers bug bounty services like Hacker One that outsource vulnerability disclosure to hackers. The 

paper outlines the costs and benefits for companies and hackers. Running a bug bounty program for a year costs less than 

hiring two software developers, highlighting its cost-efficiency in resolving vulnerabilities. 

3. PROPOSED SYSTEM  

     The general steps of the proposed methodology are: 

1. Data Preparation: 

• Gather a dataset of approved facial images for training. 

• Data set preprocessing, including resizing, normalization and data enhancement. 

2. CNN Model Structure: 

• Determine the structure of a convolutional neural network (CNN) suitable for face detection. 

• Create layers for convolution, pooling, and fully connected layers. 

• Add activation functions, such as ReLU. 

• Compile the model using appropriate loss functions and optimizers. 

3. Model Training: 

• Split the data set into training and validation sets. 

• Train the CNN model on the training data. 

• Monitor training progress and adjust hyper parameters as needed. 
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4. Evaluation: 

• Evaluates the trained model on a separate test dataset. 

• Calculate precision, precision, recall, and F1 score for face detection. Rephrase it linguistically and 

replace it with synonyms 

      The steps as shown in Figure 1. 

 

 

 

 

 

3.1 Implementing a Bug Bounty Program in a Face Detection Library Preparation and Implementation 

Steps: 

3.1.1 Setting up the Emulation Library: 

• Create a Python library that simulates the face detection function. 

• Include known vulnerabilities or issues in the library code. 

3.1.2 Error Reporting Mechanism: 

• Developed a reporting system that allows users to submit bug reports. 

• Include a form for users to explain issues and upload code or sample data. 

3.1.3 Bug Tracking: 

• Create a bug-tracking system to record and categorize incoming bug reports. 

• Assign severity levels to each reported issue. 

3.1.4 Bug Fix: 

• Develop a process to address reported errors. 

• Prioritize errors and fix them based on their severity. 

• Update library code with bug fixes. 

3.1.5 Bug Bounties: 

• Set rewards or incentives for users who report valid vulnerabilities. 

• Implement a mechanism to distribute rewards to successful informants. 

3.1.6 Documentation: 

• Provide clear documentation for the library, including how to report bugs and participate in the Bug 

Bounty program. 

        The use case of the proposed method is shown in Figure 2 

Data 

Preparation 
Evaluation 

 

Model 

Training 

 

CNN Model 

Architecture 

 

FIGURE 1.   General Diagram for Face Detection 
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3.2 Evaluating the effectiveness of a bug bounty program in detecting defects in facial recognition algorithms : 

This approach replicates bug bounty via false facial detection. This study tests a bug bounty program's 

facial recognition algorithm defect detection. The system contains face detection, quality evaluation metrics, 

bug bounty simulation, vulnerability assessment, and results presentation simulation libraries. 

3.2.1 Face detection simulation library: 

This custom library simulates facial detection. To simulate real-world facial recognition systems, this 

library has intended shortcomings. The library correctly and incorrectly recognizes facial positions. 

3.2.2  Quality measurement standards: 

The quality metrics system assesses bug bounty performance. It assesses detection accuracy and 

completeness using precision and recall. Accuracy is the percentage of faces properly identified, whereas recall 

is the percentage of faces discovered. 

3.2.3  Simulation Bug Bounty Technology: 

This method employs a face detection library and real faces with known locations. The error reward 

simulation uses the simulation library to test face detection. Comparing recognized faces to actual faces yields 

accuracy and recall measurements. 

3.2.4  Vulnerability assessment: 

After detection, specific criteria are used to evaluate the vulnerability. Vulnerabilities are identified if the 

number of recognized faces exceeds a specified minimum, indicating flaws in the detection algorithm. 

 

FIGURE 2.   Use Case Diagram for the Proposed Method 
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3.2.5 Results: 

 The results of the bug bounty simulation are presented in the form of text and images. The bug bounty 

program aims to report precision, recall, and vulnerability. The performance of the algorithm is demonstrated 

by displaying detection images that show squares around faces. 

3.2.6 Efforts to reward repetitive errors: 

 Ongoing efforts are being made to develop a bug bounty program to test the library's performance. Face 

detection simulation, quality metrics, vulnerability assessment, and results display are included in each iteration. 

Figure 3 shows the class diagram of the proposed software. 

 

 

 

3.3 Pseudo-code Representation of the Described Process 

 

FIGURE 3.   Class Diagram for the Proposed Program 
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# Step 1: Face Detection Library Simulation 

class FaceDetectionLibrary: 

    method simulate_face_detection(image): 

        # Simulate face detection algorithm with intentional flaws 

        # Identify true positives and false positives in face detection 

        // Implementation details omitted 

 

# Step 2: Error Reporting Mechanism 

class ErrorReportingSystem: 

    method report_errors(user_description, code_samples): 

        # Allow users to describe issues and upload relevant code samples 

        // Implementation details omitted 

 

# Step 3: Error Tracking System 

class ErrorTrackingSystem: 

    variable error_reports 

 

    method __init__(): 

        error_reports = [] 

 

    method track_errors(user_report): 

        # Record and categorize error reports based on severity 

        // Implementation details omitted 

 

# Step 4: Error Resolution Process 

class ErrorResolutionProcess: 

    method prioritize_errors(): 

        # Prioritize errors based on severity levels 

        // Implementation details omitted 

 

    method fix_errors(): 

        # Implement fixes for identified errors in the face detection algorithm 

        // Implementation details omitted 

 

# Step 5: Bug Bounty Rewards 

class BugBountyRewards: 

    method determine_rewards(valid_error_reports): 

        # Define a mechanism for distributing rewards to successful error reporters 

        // Implementation details omitted 

 

# Step 6: Documentation 

class Documentation: 

    method create_documentation(): 

        # Include rules on error reporting and Bug Bounty contribution 

        // Implementation details omitted 

 

# Main Program 

# Instantiate objects for each step 

face_detection_library = FaceDetectionLibrary() 

error_reporting_system = ErrorReportingSystem() 

error_tracking_system = ErrorTrackingSystem() 

error_resolution_process = ErrorResolutionProcess() 

bug_bounty_rewards = BugBountyRewards() 

documentation = Documentation() 

 

# Simulate the Bug Bounty process 

image = load_test_image() 

detected_faces = face_detection_library.simulate_face_detection(image) 

user_report = error_reporting_system.report_errors("Found issues in face detection", code_samples) 

error_tracking_system.track_errors(user_report) 

error_resolution_process.prioritize_errors() 

error_resolution_process.fix_errors() 

bug_bounty_rewards.determine_rewards(valid_error_reports) 

documentation.create_documentation() 
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3.4 Testing environment for bug reward strategies in a face detection simulation library 

This method works well for controlled bug bounty program evaluations. False positives and negatives during detection 

help evaluate bug reward methods and find security vulnerabilities. Real-world face detection may be analyzed and 

improved using this method. Frequent and comprehensive evaluations reveal ways to improve bug bounty and program 

performance in a controlled setting. Table 1 shows these result. Table 2 Illustrates the combined results of face 

detection and bug bounty simulation 

 

Attempt 1     

Quality Metrics Precision: 0.00 Recall: 0.00 

No vulnerabilities were found.     

Attempt 2     

Quality Metrics Precision: 1.00 Recall: 1.00 

No vulnerabilities were found.     

Attempt 3     

Quality Metrics Precision: 1.00 Recall: 1.00 

Vulnerabilities found! Could you report them?   

Attempt 4     

Quality Metrics Precision: 0.00 Recall: 0.00 

No vulnerabilities were found.     

Attempt 5     

Quality Metrics Precision: 1.00 Recall: 1.00 

Vulnerabilities found! Could you report them?   

 

Table 2:- Illustrates the combined results of face detection and bug bounty simulation 

Image   Bug Bounty Report: 

 

Detected 2 

faces in the 

image. 

Bug: False 

positive in face 

detection 

Status: not a 

bug 

Reward: $0 

Bug: Memory 

leak in face 

detection 

algorithm 

Status: high 

severity 

Reward: $200 

Bug: 

Localization 

issue in error 

messages 

Status: medium 

severity 

Reward: $100 

Table 1.  Simulated Face Detection Library Results  
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Detected 1 

faces in the 

image. 

Bug Bounty 

Report: 

Bug: False 

positive in face 

detection 

Status: not a 

bug 

Reward: $0 

Bug: Memory 

leak in face 

detection 

algorithm 

Status: high 

severity 

Reward: $200 

Bug: 

Localization 

issue in error 

messages 

Status: medium 

severity 

Reward: $100 

 

Detected 4 

faces in the 

image. 

Bug: False 

positive in face 

detection 

Status: not a 

bug 

Reward: $0 

Bug: Memory 

leak in face 

detection 

algorithm 

Status: high 

severity 

Reward: $200 

Bug: 

Localization 

issue in error 

messages 

Status: medium 

severity 

Reward: $100 

 

3.5 Conclusion and future work  

The suggested face detection library simulation method evaluates error reward programs with high accuracy. The 

efficiency of bug bounty schemes may be assessed using simulation technologies and real-world occurrences. Recall and 

accuracy assess detection quality and efficiency. 

Accuracy is defined as the ratio of positive detections (either true or false) relative to all detected vulnerabilities. The 

recall metric reflects the percentage of true vulnerabilities, whether detected or not, that lead to true positive outcomes 

out of all good scenarios. This evaluation adds complexity to measuring the success of a bug bounty program. 

Regarding the flexibility of the face detection algorithm, a vulnerability assessment is included to indicate technical issues 

that improve the security of the system. A bug bounty effort is to frequent evaluation, which makes it easier to measure 

the success of the program and stabilize the library. Presenting the results of the bug bounty program through graphs and 

text reports helps understand how it detects flaws in the facial recognition algorithm. 

Face detection systems are in demand in social media and security systems, hence it is suggested to enhance them: 

1. Improving the Simulation Environment: Complex factors like illumination and viewing angles improve simulation 

accuracy. 

2. Improving Assessment Criteria: Adding new criteria to better assess bug bounty program performance. 

3. Expanding Security Vulnerabilities: Analyze and evaluate more security vulnerabilities to improve face detection 

system security. 

4. Using Machine Learning: Using machine learning to increase bug reward and detection accuracy. 
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