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ABSTRACT: In this article, a projection type two step inertial iterative scheme for investigating set-valued quasi
variational inequality in real Banach spaces is designed. We manifest the existence result and verified by an illustrative
example. Also, we estimate the approximate solution of a set-valued quasi variational inequality by analyzing the
convergence of the proposed inertial iterative algorithm. Further, an extended Weiner-Hopf equation is considered
and substantiated that it is analogous to the extended set-valued quasi variational inequality. Finally, we investigate
the extended Weiner-Hopf equation by analyzing the convergence of the composed iterative scheme.

Keywords: Set-valued quasi variational inequality; inertial iterative algorithm; strong convergence; Weiner-Hopf
equation

1. INTRODUCTION
Assume that Ω , ϕ is a closed convex set in a Banach space B and ψ : B→ B be a nonlinear mapping. The variational

inequality problem (VIP) is to observe a component â ∈Ω so that

⟨φ(â), b̂− â⟩ ≥ 0,∀b̂ ∈Ω. (1)

It is commonly known that VIP introduced by Stampacchia [50] is a highly effective and useful tool for analyzing issues
that arise in all diverse areas of natural sciences. Because of applicability and fruitful outcomes, VIPs have been broadened
and diversified in a number of ways, see, [5, 6, 14–16, 18, 29, 39]. Among these generalizations, quasi variational
inequality QVI(Ω(â),φ) is a prominent generalization which is to observe a component â ∈Ω(â) so that

⟨φ(â), b̂− â⟩ ≥ 0,∀b̂ ∈Ω(â), (2)

where Ω : B → 2B be a set-valued mapping with Ω(â) ⊂ B,∀â ∈ B. If Ω(â) = Ω,∀â ∈ B, then QVI(Ω(â),φ) reduces to
VIP (1). The study of QVIs has been recognized an extremely practical and applicable field. A model of quasi variational
inequalities has been used to frame a number of problems with practical applications, including free boundary problems,
mechanics, economy, and stochastic impulsive control modeling, see, [8, 9, 12, 25, 26, 31]. It was demonstrated by Noor
et al. [38, 41] that the obstacle boundary value problem (OBVP) of pointing out w so that

−w
′′′

(x) ≥ φ(x), on D = [a1,a2]
w(x) ≥C(w), on D = [a1,a2]
[−w

′′′

(x)−φ(x)][w−C(w)] = 0, on D = [a1,a2]
w(a1) = 0,w

′

(a1) = 0,w
′

(a2) = 0,

(3)
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where φ is continuous and C(w) represents the obstacle (cost) function can be formulated as following generalized quasi
variational inequality

⟨θ(w),ϕ(q)−ϕ(w)⟩ ≥ ⟨φ,ϕ(q)−ϕ(w)⟩,∀q ∈Ω(w). (4)

Following important lemma assures the existence of solution of QVI(Ω(â),φ).
Lemma 1. [37] Assume that the subsequent premises hold true.

(i) Suppose φ : H→H is δφ-Lipschitz continuous and ς-strongly monotone.

(ii) The projection mapping PΩ(â) : H→Ω(â) satisfies

PΩ(â)(ξ)−PΩ(b̂)(ξ) ≤ ν∥â− b̂∥,∀â, b̂, ξ ∈H,

(iii) ∃b̂ ≥ 0 comply with b̂+
√

1− (ς/δφ)2 < 1.

Then QVI(Ω(â),φ) has a unique solution.

In case Ω(â) = Ω, assumption (ii) holds for b̂ = 0 and the assumption (iii) becomes trivial. Therefore, assuming
assumption (i) of Lemma 1 holds, then VIP (1.1) has a unique solution, see [37]. The QVI(Ω(â),φ) was initially developed
by Bensoussan and Lions [9] for addressing problems related to impulse control. QVIs bring forth an integrated framework
for variation inequalities and integrated modeling of significant physical problems. Several applications and significance
of QVIs include superconductivity, thermoplasticity or electrostatics [22, 23, 28], continuum and solid mechanics [10, 27,
42], transportation [11, 47], game theory [21], etc.

However, the fixed point theory has become fastest expanding research field. Numerous problems appearing in sci-
ence, and engineering, particularly in ODEs, PDEs, VIs, and zeros of monotone operators have been investigated by
transforming as a model of fixed point problem. The fixed point of a nonlinear mapping φ : B → B is described as
Fix(φ) = {â ∈B : φ(â) = â}. Owing to the significance of fixed points numerous new iterative schemes have been designed
and tackled over the last few years. The extensively researched and widely used method for determining fixed points is
due to Mann iteration method [35], which is given as:

µn+1 = (1−αn)µn+αnφ(µn),n ∈ N, (5)

where αn ∈ [0,1].. A few common and widely used iteration techniques include Ishikawa iteration [24], Halpern itera-
tion [20], S -iteration [2].

Researchers are fascinated by the possibility of achieving enhanced convergence rates by developing iterative methods
to obtain the solutions of nonlinear problems. In an attempt to obtain an increasing rate of convergence, several iterative
schemes have been investigated and tested. A such attempt was made to enhance the convergence rate by adding inertial
term, see, [29, 34, 45, 46, 49]. It was Polyak [43] who originated the inertial term to investigate an optimization problem.
In order to acquire the inertial term the heavy ball method was employed by discretizing the following second order
system:

µ
′′

(t)+ψµ
′

(t)+∇ω(µ(t)) = 0, (6)

where ω : H→ R is differentiable, µ(t) represents time continuous trajectory, ψ(µ(t)) external gravitational field and ψ > 0
the friction. Richardson [44] employed a relaxation method to solve a linear systems with augmented rate of convergence.
In this sequel, Eckstein and Bertsekas [17] accelerated a proximal point algorithm by adding an relaxation parameter.
Further by adding relaxation techniques with inertial term, Alvarez [7] proposed an iteration process to deal with convex
optimization and monotone inclusion problems. In this development, Maigne [32] devised the inertial Mann iterative
scheme to reckon fixed points of a nonexpansive mapping as:{

νn = µn+τn(µn+µn−1),
µn+1 = (1−an)νn+anφνn,∀n ∈ N, (7)

where an is a relaxation factor and τn is a damping term. Owing to the attraction of researchers and importance of
augmented rate of convergence, so far numerous iterative methods involving single or double inertial terms have been
designed and analyzed, see [1, 3, 4, 19, 48, 51? ]. Recently, Çopur et al. [13] investigated QVI(Ω(â),φ) by analyzing the
following inertial iteration process involving two inertial terms as follows:

µn = wn+γn(ζn− ζn−1),
νn = wn+τn(ζn− ζn−1),
ζn+1 = (1−an−bn)νn+anφ(νn)+bnµn,

(8)
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where {γn}, {τn} are sequences in (0,1). Motivated and convinced by the acknowledged information cited in the sources
mentioned above, our motive is to examine the EQVI(B,ψ,φ,Ψ). We manifest the existence result which is validated by an
illustrative example. Also, we estimate the approximate solution of EQVI(B,ψ,φ,Ψ) by analyzing the convergence of two
steps inertial iterative algorithm based on (8). Further, an extended Weiner-Hopf equation is considered and substantiated
that it is analogous to EQVI(B,ψ,φ,Ψ). By implementing this equivalence, we derive the solution of EQVI(B,ψ,φ,Ψ).
Lastly, we investigate the extended Weiner-Hopf equation by analyzing the convergence of the composed scheme.

2. PRELUDES AND EXISTENCE RESULTS
Let B be a real Banach space equipped with norm ∥ · ∥; ⟨·, ·⟩ is the duality pairing between B and its dual space B∗; the

family of closed and bounded subsets of B is represented by CB(B) and 2B is the power set of B. The normalized duality
mapping J : B→ 2B

∗

is expressed as

J(â) = {φ ∈ B∗ : ⟨â,φ⟩ = ∥â∥2 = ∥φ∥|2},∀â ∈ B.

Lemma 2. For all e1,e2 ∈ B, J : B→ B∗ is characterized by the following inequalities:

(i) ∥e1+ e2∥
2 ≤ ∥e1∥

2+2⟨e2, J(e1+ e2)⟩;

(ii) ⟨e1− e2, Je1− Je2⟩ ≤ 2d2ρB(4∥e1− e2∥/d);

where, d =
√

(∥e1∥2+ ∥e2∥2)/2 and the modulus of smoothness of B is expressed as

ρB(t) = sup
{ ∥e1+ e2∥+ ∥e1− e2∥

2
−1 : ∥e1∥ ≤ 1,∥e2∥ ≤ t

}
.

The Hausdorff metric D(·, ·) on CB(B) is expressed as

D(φ,ψ) =max
{

sup
e1∈φ

inf
e2∈ψ

d(e1,e2), sup
e2∈ψ

inf
e1∈φ

d(e1,e2)
}
.

Now onward, the Banach space B is taken as a uniformly smooth. Let Ω , ϕ be a closed convex subset of B. A mapping
RΩ :B→Ω is retraction if R2

Ω
=RΩ, nonexpansive retraction if RΩ is retraction and ∥RΩ(e1)−RΩ(e2)∥ ≤ ∥e1−e2∥,∀e12,e2 ∈

B; and sunny retraction if RΩ(RΩe1− t(e1−RΩe1) = RΩe1),∀e1 ∈B, t ∈ R. The following lemma is essential and necessary
to accomplishing the goal.

Lemma 3. A mapping RΩ : B→Ω is sunny nonexpansive retraction if and only if

⟨e1−RΩ(e1), J(RΩ(e1)− e2)⟩ ≥ 0,∀e1 ∈ B,e2 ∈Ω(e1).

Assumption C [40] For given e1,e2, ς
∗ ∈ B and constant κ > 0, the mapping PΩ fulfills the condition

∥PΩ(e1)(ς∗)−PΩ(e2)(ς∗)∥ ≤ κ∥e1− e2∥.

Definition 1. A mapping φ : B→ B is referred as

(i) η-strongly accretive, if ∃η ≥ 0,

⟨φ(e1)−φ(e2), J(e1− e2)⟩ ≥ η∥e1− e2∥
2,∀e1,e2 ∈ B;

(ii) δ-Lipschitz continuous, if ∃δ > 0,

∥φ(e1)−φ(e2)∥ ≤ δ∥e1− e2∥,∀e1,e2 ∈ B,

(iii) κ-expanding if, ∃κ > 0,
∥φ(e1)−φ(e2)∥ ≥ κ∥e1− e2∥,∀e1,e2 ∈ B.

Note that η-strongly accretive mapping φ is η-expanding.

Definition 2. Let φ,S ,T : B→ B;ψ : B×B→ B be the single-valued mappings. Then ψ(S ,T ) is referred as
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(i) τ-strongly accretive regarding φ, if ∃τ ≥ 0,

⟨ψ(S (e1),T (e1))−ψ(S (e2),T (e2)), J(φ(e1)−φ(e2)⟩ ≥ τ∥e1− e2∥
2,∀e1,e2 ∈ B;

(ii) ς-Lipschitz continuous, if ∃ς > 0,

∥ψ(S (e1),T (e1))−ψ(S (e2),T (e2))∥ ≤ ς∥e1− e2∥,∀e1,e2 ∈ B.

Definition 3. A mapping ψ : B×B→ B is called (σ,υ)-mixed Lipschitz continuous, if for some σ,υ > 0,

∥ψ(e1, t1)−ψ(e2, t2)∥ ≤ σ∥e1− e2∥+υ∥t1− t2∥,∀e1,e2, t1, t2 ∈ B.

Remark 1. Let A : B→CB(B) be a set-valued mapping, then for every â, b̂ ∈B and µ ∈ A(e1),υ ∈ B(e2) there exist ϵ,δ > 0
such that

(i) ∥µ−υ∥ ≤D(A(e1),A(e2))+ ϵ∥e1− e2∥,

(ii) ∥µ−υ∥ ≤ δD(A(e1),A(e2)).

Lemma 4. [30] Suppose that the nonnegative real sequences {ân} and {b̂n} satisfy

ân+1 ≤ τân+ b̂n,∀n ∈ N,

for some 0 ≤ τ < 1. If lim
n→∞

b̂n = 0, then lim
n→∞

ân = 0,

Next, we shall define EQVI(B,ψ,φ,Ψ). Let A,B : B → CB(B) be set-valued mappings, Ψ,ψ : B ×B → B,φ,S ,T :
B→ B be single-valued mappings, and for any â ∈ B, Ω : B→ 2B assigns a closed convex-valued set Ω(â) in B. We are
intended to examine the extended quasi variational inequality EQVI(B,ψ,φ,Ψ) which is to find {(â,µ,υ) : â ∈ B,φ(â) ∈
Ω(â),µ ∈ A(â),υ ∈ B(â)} such that

⟨ρ(ψ(S (â),T (â))+φ(â))−Ψ(µ,ν), J(φ(b̂)−φ(â))⟩ ≥ 0,∀b̂ ∈ B,φ(b̂) ∈Ω(â). (9)

EQVI(B,ψ,φ,Ψ) is a broader and unified class of quasi variational inequality. Several VIs and QVIs can be achieved
by EQVI(B,ψ,φ,Ψ) for different selection of involved mappings. In the next result, we obtain an equivalent fixed point
problem by transforming (EQVI(B,ψ,φ,Ψ)).

Lemma 5. Let PΩ(â) : B→Ω(â) be a sunny nonexpansive retraction. An element (â,µ,ν) with â ∈B,φ(â) ∈Ω,µ ∈ A(â), ν ∈
B(â) solves EQVI(B,ψ,φ,Ψ) if and only if â ∈ Fix(Q), where

Q(â) = â−φ(â)+PΩ(â)[(1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)], (10)

and ρ > 0 is a constant.

Theorem 1. Suppose that φ : B → B be κ-strongly accretive, δ-Lipschitz continuous mapping; Ψ,ψ : B ×B → B and
S ,T :B→B be the single-valued mappings so that ψ(S ,T ) is τ-strongly accretive regarding φ and ς-Lipschitz continuous,
Ψ is (σ,υ)-mixed Lipschitz continuous and A,B : B → CB(B) be θ-D-Lipschitz continuous, ϑ-D-Lipschitz continuous,
respectively. If the retraction PΩ(â) : B→Ω(â) comply with the Assumption C and constant ρ > 0 satisfies:

Θ+ρδ < 1−Φ, κ <
1+64εδ2

2
, τ <

δ2+64ες2

2ρ
. (11)

Then (â,µ,ν) such that â ∈ B,φ(â) ∈Ω(â),µ ∈ A(â), ν ∈ B(â) solves EQVI(B,ψ,φ,Ψ).

Proof. Assume that for given â, b̂ ∈ B,µ ∈ A(â), ν ∈ B(â), µ̄ ∈ A(b̂), ν̄ ∈ B(b̂), there exist a∗ ∈ Q(â) and b∗ ∈ Q(b̂) so that

a∗ = â−φ(â)+PΩ(â)[(1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)], (12)

and
b∗ = b̂−φ(b̂)+PΩ(b̂)[(1−ρ)φ(b̂)−ρψ(S (b̂),T (b̂))+Ψ(µ̄, ν̄)]. (13)
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By (12), (13) and considering the Assumption C, we obtain

∥a∗−b∗∥ ≤ ∥â− b̂− (φ(â)−φ(b̂))∥
+ ∥PΩ(â)[(1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)]

−PΩ(b̂)[(1−ρ)φ(b̂)−ρψ(S (b̂),T (b̂))+Ψ(µ̄, ν̄)]∥

≤ ∥â− b̂− (φ(â)−φ(b̂))∥+ ξ∥â− b̂∥

+ ∥(1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)

− [(1−ρ)φ(b̂)−ρψ(S (b̂),T (b̂))+Ψ(µ̄, ν̄)]∥

≤ ∥â− b̂− (φ(â)−φ(b̂))∥+ ξ∥â− b̂∥+ρ∥φ(â)−φ(b̂)∥

+ ∥φ(â)−φ(b̂)−ρ(ψ(S (â),T (â))−ψ(S (b̂),T (b̂)))∥
+ ∥Ψ(µ,ν)−Ψ(µ̄, ν̄)∥.

(14)

Employing κ-strongly accretive property, δ-Lipschitz continuity of φ and taking advantage of Lemma 2, we achieve

∥â− b̂− (φ(â)−φ(b̂))∥2

≤ ∥â− b̂∥2−2⟨φ(â)−φ(b̂), J(â− b̂− (φ(â)−φ(b̂)))⟩

≤ ∥â− b̂∥2−2⟨φ(â)−φ(b̂), J(â− b̂)⟩

+2⟨φ(â)−φ(b̂), J(â− b̂− (φ(â)−φ(b̂)))− J(â− b̂)⟩

≤ (1−2κ+64εδ2)∥â− b̂∥2.

(15)

Recalling the Lemma 2 and assumptions that φ is δ-Lipschitz continuous, ψ(S ,T ) is τ-strongly accretive regarding φ and
ς-Lipschitz continuous, we achieve

∥φ(â)−φ(b̂)−ρ(ψ(S (â),T (â))−ψ(S (b̂),T (b̂)))∥2

≤ ∥φ(â)−φ(b̂)∥2−2ρ⟨ψ(S (â),T (â))−ψ(S (b̂),T (b̂)),

J(φ(â)−φ(b̂)−ρ(ψ(S (â),T (â))−ψ(S (b̂),T (b̂)))⟩

≤ ∥φ(â)−φ(b̂)∥2−2ρ⟨ψ(S (â),T (â))−ψ(S (b̂),T (b̂))),

J(φ(â)−φ(b̂))⟩+2ρ⟨ψ(S (â),T (â))−ψ(S (b̂),T (b̂))),

J(φ(â)−φ(b̂)−ρ(ψ(S (â),T (â))−ψ(S (b̂),T (b̂)))

− J(φ(â)−φ(b̂))⟩

≤ δ2∥â− b̂∥2−2ρτ∥â− b̂∥2+64ες2∥â− b̂∥2

= (δ2−2ρτ+64ες2)∥â− b̂∥2.

(16)

Employing (σ,υ)-mixed Lipschitz continuity of Ψ, Lipschitz continuities of A and B yields

∥Ψ(µ,ν)−Ψ(µ̄, ν̄)∥ ≤ σ∥µ− µ̄∥+υ∥ν− ν̄∥

≤ σD(A(â),A(b̂))+υD(B(â),B(b̂))

≤ σθ∥â− b̂∥+υϑ∥â− b̂∥

= (σθ+υϑ)∥â− b̂∥.

(17)

Combining (15), (16) and (17), (14) turns into

∥a∗−b∗∥ ≤ {
√

1−2κ+64εδ2+ (ξ+ρδ)

+

√
δ2−2ρτ+64ες2+ (σθ+υϑ)}∥â− b̂∥

= (Θ+ρδ+Φ)∥â− b̂∥ = L∥â− b̂∥,

(18)

where,

L = Θ+ρδ+Φ,Θ =
√

1−2κ+64εδ2+σθ+υϑ,Φ = ξ+

√
δ2−2ρτ+64ες2. (19)

Clearly, from (18) and condition (11), we conclude that the set-valued mapping Q is a contraction and hence ∃â ∈ B so
that â ∈ Fix(Q). Thus, Lemma 5 guarantees that (â,µ,υ) so that â ∈ B,µ ∈ A(â),υ ∈ B(â) solves EQVI(B,ψ,φ,Ψ).
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Example 1. Consider a real Banach space l2 = {â = (â0, â1, â2, · · · ) :
∑∞

n=0 |ân|
2 <∞, ân ∈ R,∀n = 0,1,2, · · · } and ∥â∥2 =(∑∞

n=0 |ân|
2
)1/2

. Define φ,S ,T : B→ B;ψ,Ψ : B×B→ B and A,B : B→CB(B) by

φ(â) =
â
2
,S (â) =

â
4
,T (â) =

â
8
,∀â ∈ B,

ψ(S (â),T (â)) =
(S (â)+T (â))

4
,Ψ(µ,ν) =

µ+ ν

8

and A(â) =
{ â
4

}
, B(â) =

{2â
3

}
.

Then, one can discern that for all â, b̂ ∈ B,

⟨â− b̂,φ(â)−φ(b̂)⟩ = ⟨â− b̂,
â
2
−

b̂
2
⟩ =

1
2
∥â− b̂∥22,

∥φ(â)−φ(b̂)∥2 = ∥
1
2

â−
1
2

b̂∥2 =
1
2
∥â− b̂∥2.

i.e., φ is
1
2

-strongly accretive and
1
2

-Lipschitz continuous. Also,

⟨ψ(S (â),T (â))−ψ(S (b̂),T (b̂)),φ(â)−φ(b̂)⟩ = ⟨
3â
32
−

3b̂
32
,
â
2
−

b̂
2
⟩ =

3
64
∥â− b̂∥22,

∥ψ(S (â),T (â))−ψ(S (b̂),T (b̂))∥2 =
∥∥∥∥3â

32
−

3b̂
32

∥∥∥∥
2
=

3
32
∥â− b̂∥2.

i.e., ψ(S ,T ) is
3
64

-strongly accretive and
3

32
-Lipschitz continuous. Now, for all µ ∈ A(â), µ̄ ∈ A(b̂), ν ∈ B(â), ν̄ ∈ B(b̂), one

can acquire

∥Ψ(µ,ν)−Ψ(µ̄, ν̄)∥2 =
∥∥∥∥µ+ ν4

−
µ̄+ ν̄

4

∥∥∥∥
2
≤

1
4
∥µ− µ̄∥2+

1
4
∥ν− ν̄∥2,

∥µ− µ̄∥2 = ∥
â
4
−

b̂
4
∥2 =

1
4
∥â− b̂∥2 and ∥ν− ν̄∥2 = ∥

2â
3
−

2b̂
3
∥2 =

2
3
∥â− b̂∥2.

Thus, Ψ is
(1
4
,
1
4

)
-mixed Lipschitz continuous, A and B are

1
4

and
2
3

-Lipschitz continuous, respectively. Define Ω : B→B

by

Ω(â) = Ω({ân}) =
{
t = {tn} : t0 ≥

â0

15
, tn = 0,∀n ∈ N

}
.

We assert that Ω(â) is a closed and convex. For arbitrary α ∈ [0,1] and t0,m0 ∈ Ω(â), we have αt0 + (1−α)m0 ≥
â0
15 and

henceΩ(â) is a convex set. Define f : [ â0
15 ,∞)→Ω(â) by f (r)= (r,0,0, · · · ). Evidently, f is well defined. For t ,m ∈ [ â0

15 ,∞),
we achieve (t,0,0, · · · ) , (m,0,0, · · · ), i.e., f is one-to-one. Simple observation reveals that there is an t0 ∈ [ â0

15 ,∞) so that
f (t0) = (t0,0,0, · · · ) for each t = (t0,0,0, · · · ) ∈ Ω(â), i.e., f is onto. Let (l2,d

′

) and (R,d) be usual metric spaces. For each
t,m ∈ [ â0

15 ,∞), we obtain
d
′

( f (t), f (m)) = d
′

((t,0,0, · · · ), (m,0,0, · · · )) = |t−m| = d(t,m).

Thus f is continuous. Additionally, f −1 is also continuous and bijective, so f is homeomorphism. So Ω(â) is homeomor-
phic to a closed set [ â0

15 ,∞), hence Ω(â) is closed. Define retraction PΩ(â) : B→Ω(â) by

PΩ(â)(l0, l1, l2, · · · ) =


(l0, l1, l2, · · · ), if (l0, l1, l2, · · · ) ∈Ω(â)
( â0

15 ,0,0, · · · ), if (l0, l1, l2, · · · ) <Ω(â), l0 <
â0
15

(l0,0,0, · · · ), if (l0, l1, l2, · · · ) <Ω(â), l0 ≥
â0
15 .

In order to demonstrate that PΩ(â) complies with assumption C, we address the subsequent cases.
Case (a). For arbitrary â = {ân},q = {qn}, l = {ln} ∈H, assume that â0 ≤ q0.
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1. If l = {ln} ∈Ω(q), then l = {ln} ∈Ω(â) and hence

∥PΩ(â)(l)−PΩ(q)(l)∥2 = ∥(l0, l1, l2, · · · )− (l0, l1, l2, · · · )∥2

= 0 ≤
1
15
∥â−q∥2.

2. If l = (l0, l1, l2, · · · ) <Ω(q) and l = (l0, l1, l2, · · · ) ∈Ω(â), then either l0 <
q0
15 or l0 ≥

q0
15 . For l0 <

q0
15 , we have

∥PΩ(â)(l)−PΩ(q)(l)∥2 = ∥(l0, l1, l2, · · · )−
( â0

15
,0,0, · · ·

)
∥2

= ∥(l0,0,0, · · · )−
( â0

15
,0,0, · · ·

)
∥2

=
∣∣∣∣l0− â0

15

∣∣∣∣ = l0−
â0

15

≤
1

15
∥â−q∥2.

For l0 ≥
q0
15 , we have

∥PΩ(â)(l)−PΩ(q)(l)∥2 = ∥(l0, l1, l2, · · · )− (l0,0,0, · · · )∥2
= ∥(l0,0,0, · · · )− (l0,0,0, · · · )∥2

= 0 ≤
1
15
∥â−q∥2.

3. If l = (l0, l1, l2, · · · ) < Ω(q) and l = (l0, l1, l2, · · · ) < Ω(â), then either l0 <
q0
15 or l0 ≥

q0
15 and l0 <

â0
15 or l0 ≥

â0
15 . For

l0 <
â0
15 , we have l0 <

q0
15 . Thus,

∥PΩ(p)(l)−PΩ(q)(l)∥2 =
∥∥∥∥( â0

15
,0,0, · · ·

)
−
( q0

15
,0,0, · · ·

)∥∥∥∥
2

=
∣∣∣∣ â0

15
−

q0

15

∣∣∣∣ ≤ 1
15
∥â−q∥2.

For l0 ≥
â0
15 and l0 ≥

q0
15 , we have

∥PΩ(â)(l)−PΩ(q)(l)∥2 = ∥(l0,0,0, · · · )− (l0,0,0, · · · )∥2

= 0 ≤
1

15
∥â−q∥2.

For l0 ≥
â0
15 and l0 <

q0
15 , we have

∥PΩ(p)(l)−PΩ(q)(l)∥2 = ∥(l0,0,0, · · · )−
( q0

10
,0,0, · · · )∥2

=
∣∣∣∣l0− q0

15

∣∣∣∣ = q0

15
− l0 ≤

q0

15
−

â0

15
≤

1
15
∥â−q∥2.

Case (b). Analogously, for â = {ân},q = {qn},r = {ln} ∈ B with â0 > q0, we can verify that

∥PΩ(â)(l)−PΩ(q)(l)∥2 ≤
1

15
∥â−q∥2.

Thus, PΩ(â) satisfies the assumption C with constant ξ = 1
15 . Further, for ρ = 1

2 and ε = 10−2, the condition (11) is also
satisfied for κ = δ = 1

2 , τ =
3
64 , ς =

3
32 ,σ = υ =

1
4 , θ =

1
4 ,ϑ =

2
3 . Finally, consider â∗ = (â∗0,0,0, · · · ) : â∗0 ≥ 0, then for â∗ > 0,

we have

⟨ρ(ψ(S (â),T (â))+φ(â))−Ψ(u,v), J(φ(b̂)−φ(â))⟩ = ⟨
35

192
â,

1
2

(b̂)−
1
2

(â)⟩

=
35

3384
⟨(â0,0,0, · · · ), (b̂0− â0,0,0, · · · )⟩

< 0,∀b̂ = (b̂0,0,0, · · · ) ∈Ω(â).
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However, for â = (0,0,0, · · · ), we have

⟨ρ(ψ(S (â),T (â))+φ(â))−Ψ(u,v), J(φ(b̂)−φ(â))⟩

= ⟨(0,0,0, · · · ), (b̂0− â0,0,0, · · · )⟩

= 0,∀b̂ = (b̂0,0,0, · · · ) ∈Ω(â).

Hence, (â,µ,ν) = (0,0,0) is a unique solution of EQVI(B,ψ,φ,Ψ).

3. ITERATIVE SCHEME AND CONVERGENCE
Next, we discuss the lemma below in Banach spaces plays a pivotal role in establishing the convergence. An identical

form proved in Hilbert spaces can be found in [13].

Lemma 6. Under the suppositions of the Theorem 1, the sequence {Ξn∥ân − ân−1∥} converges to 0, where Ξn is outlined
below:

Ξn =


min
{ n−1
n−1+ κ

,
en

∥ân− ân−1∥

}
, if ân , ân−1,

n−1
n−1+ κ

, if ân = ân−1,
(20)

∀n ∈ N, κ ≥ 3 and en ∈ (0,∞) with lim
n→∞

en = 0.

Proof. The proof can be justified by taking the following possibilities into consideration.
Case (c1). If ân = ân−1, then naturally {Ξn∥ân− ân−1∥} is zero sequence. Next, we carry on for ân , ân−1.

Case (c2). Suppose Ξn =
n−1

n−1+ κ
,∀n ∈ N, then

0 ≤ Ξn =
n−1

n−1+ κ
≤

en

∥ân− ân−1∥
and hence 0 ≤ Ξn∥ân− ân−1∥ ≤ en.

Case (c3). Suppose Ξn =
en

∥ân− ân−1∥
,∀n ∈ N, then

0 ≤ Ξn =
en

∥ân− ân−1∥
≤

n−1
n−1+ κ

and hence 0 ≤ Ξn∥ân− ân−1∥ = en.

Case (c4). Finally, suppose Ξn =
n−1

n−1+ κ
=

en

∥ân− ân−1∥
for some n ∈ N, then we obtain 0 ≤ Ξn∥ân − ân−1∥ = en. Thus, in

all cases, 0 ≤ Ξn∥ân− ân−1∥ ≤ en. Since lim
n→∞

en = 0 and hence {Ξn∥ân− ân−1∥} converges to 0.

We reformat the algorithm (8) as follows in light of (10).

Algorithm 1. Initialization: Given ρ > 0, initial points â0, â1 ∈ B,µ0 ∈ A(â0), ν0 ∈ B(â0). Choose the sequences {αn}
∞
n=1,

{βn}
∞
n=1, {γn}

∞
n=1, {τn}

∞
n=1 and {en}

∞
n=1 so that the assumptions of Lemma 6 hold.

Step 1: For given iterates ân−1, ân, choose Ξn so that

Ξn =


min
{ n−1
n−1+ κ

,
en

∥ân− ân−1∥

}
, if ân , ân−1,

n−1
n−1+ κ

, if ân = ân−1.

Step 2: Set ĉn = ân+γn(ân− ân−1),
b̂n = ân+τn(ân− ân−1).

Compute ζn = (1−ρ)φ(b̂n)−ρψ(S (b̂n),T (b̂n))+Ψ(µ̄n, ν̄n)] : µ̄n ∈ A(b̂n), ν̄n) ∈ B(b̂n).
Step 3: Compute ân+1 = (1−γn−τn)b̂n+γn{b̂n−φ(b̂n)+PΩ(b̂n)ζn}+τnĉn.
Set n := n+1 and go to Step1.

Theorem 2. Suppose that all the hypotheses of Theorem 1 are fulfilled by the mappings PΩ(â),φ,Ψ,ψ,S ,T,A and B.
Suppose that {ân}

∞
n=1 is generated by Algorithm 1 with max{|γn|, |τn|} ≤ Ξn,∀n ∈ N, where Ξn is the updating parameter

described in (20). Let {αn}
∞
n=1, {βn}

∞
n=1 and {en}

∞
n=1 are sequences in (0,1), so that 0 < αn + βn < 1,α ≤ αn for some α > 0

and lim
n→∞

en = 0,∀n ∈ N. Then ân→ â,µn→ µ and νn→ ν and (â,µ,ν) solves EQVI(B,ψ,φ,Ψ).
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Proof. It is evident by the Theorem 1 that EQVI(B,ψ,φ,Ψ) admits a solution (â,µ,ν) such that â ∈B,φ(â) ∈Ω(â),µ ∈ A(â)
and ν ∈ B(â). Then

â = â−φ(â)+PΩ(â)[(1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)]. (21)

Next, we substantiate that ân→ â an n→∞. Using the presumptions from Theorem 1, Assumption C, utilizing Lemma 2
and replicating the steps as from (15)-(18), we acquire

∥b̂n−φ(b̂n)+PΩ(b̂n)ζn− â∥

≤ ∥b̂n− â− (φ(b̂n)−φ(â))∥+ ξ∥b̂n− â∥+ρ∥φ(b̂n)−φ(â)∥

+ ∥φ(b̂n)−φ(â)−ρ(ψ(S (b̂n),T (b̂n))−ψ(S (â),T (â)))∥
+ ∥Ψ(µ̄n, ν̄n)−Ψ(µ,ν)∥

≤ [
√

1−2κ+64εδ2+ (ξ+ρδ)+
√
δ2−2ρτ+64ες2+ (σθ+υϑ)]∥b̂n− â∥,

= L∥b̂n− â∥,

(22)

where, L is same as in (19). From Algorithm 1 and (22), we acquire

∥ân+1− â∥ ≤ (1−αn−βn)∥b̂n− â∥+αn∥b̂n−φ(b̂n)
+PΩ(b̂n)ζn− â∥+βn∥ĉn− â∥

≤ (1−αn−βn)∥b̂n− â∥+αnL∥b̂n− â∥+βn∥ĉn− â∥

= (1−αn−βn+αnL)∥b̂n− â∥+βn∥ĉn− â∥.

(23)

Since 0 < L < 1 and αn ≥ α, invoking defining properties of b̂n, ĉn and (11), (23) turns into

∥ân+1− â∥ ≤ (1−αn−βn+αnL)[∥ân− â∥+τn∥ân−wn−1∥]
+βn[∥ân− â∥+γn∥ân− ân−1∥]
≤ (1−αn(1−L)∥ân− â∥+ [(1−αn−βn+αnL)|τn|

+βn|γn|]∥ân− ân−1∥

≤ (1−αn(1−L)∥ân− â∥+ [(1−αn−βn+αn)|τn|

+βn|γn|]∥ân− ân−1∥

≤ (1−α(1−L)∥ân− â∥+ (|τn|+ |γn|)∥ân− ân−1∥

≤ (1−α(1−L)∥ân− â∥+2Ξn∥ân− ân−1∥.

(24)

Invoking the Lemma 6, we acquire lim
n→∞
Ξn∥ân − ân−1∥ = 0 and the assumptions yield 0 < (1− α(1− L)) < 1. Thus the

conclusion ân→ â as n→∞ follows by the Lemma 4. Since µ̄n ∈ A(b̂n),µ ∈ A(â) and A is θ-D-Lipschitz continuous, then

∥µ̄n−µ∥ ≤D(A(b̂n),A(â)) ≤ θ∥b̂n− â∥

≤ θ[∥ân− â∥+τn∥ân− ân−1∥].
(25)

Again from Lemma 6, lim
n→∞

τn∥ân− ân−1∥= 0. Hence, lim
n→∞

µ̄n = µ, and in the similar manner, lim
n→∞

ν̄n = ν. Also {ĉn} converges

to ĉ and {b̂n} converges to b̂. Finally, we shall demonstrate that µ ∈ A(â), ν ∈ B(â).

d(µ,A(â))∥ ≤ ∥µ−µn∥+d(µn,A(â))
≤ ∥µ−µn∥+D(A(ân),A(â))
≤ ∥µ−µn∥+ θ∥ân− â∥ → 0 as n→∞.

(26)

Thus d(µ,A(â)) = 0, thus µ ∈ A(â) and likewise ν ∈ B(â).

4. EXTENDED WEINER-HOPF EQUATION
Now, we construct an extended Wiener-Hopf equation (EWHE) and substantiated that it is analogous to EQVI(B,ψ,φ,Ψ).

By implementing this equivalence, we derive the solution of EQVI(B,ψ,φ,Ψ).
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We think about EWHE of finding {(ẑ, â,µ,ν) : ẑ, â ∈ B,µ ∈ A(â), ν ∈ B(â)} so that

φ(â)+ρ−1RΩ(â)ẑ = −ψ(S (â),T (â))+ρ−1Ψ(µ,ν), (27)

where RΩ(â) = Id − PΩ(â), Id is the identity mapping. In the forthcoming theorem, we will correlate the solutions of
EWHE(27) and EQVI(B,ψ,φ,Ψ).

Theorem 3. A point (ẑ, â,µ,ν) such that ẑ, â ∈ B,µ ∈ A(â), ν ∈ B(â) solves EWHE(27) if and only if (â,µ,ν) solves
EQVI(B,ψ,φ,Ψ), where

φ(â) = PΩ(â)ẑ, (28)

ẑ = (1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν). (29)

Proof. Assume that (ẑ, â,µ,ν) such that ẑ, â ∈ B,µ ∈ A(â), ν ∈ B(â) is a solution of EWHE(27). Then, one can discern that

ρφ(â)+ρψ(S (â),T (â))−Ψ(µ,ν) = −RΩ(â)ẑ = PΩ(â)ẑ− ẑ. (30)

Recalling Lemma 3, (30) turns into
⟨PΩ(â)ẑ− ẑ, J(ŷ−PΩ(â)ẑ)⟩ ≥ 0 (31)

which yields,
⟨ρ(φ(â)+ψ(S (â),T (â)))−Ψ(µ,ν), J(ŷ,PΩ(â)ẑ)⟩ ≥ 0.

Thus, φ(â) = PΩ(â)[(1− ρ)φ(â)− ρψ(S (â),T (â))+Ψ(µ,ν)], and hence, EQVI(B,ψ,φ,Ψ) admits a solution (â,µ,ν). Con-
versely, suppose (â,µ,ν) solves EQVI(B,ψ,φ,Ψ), then

φ(â) = PΩ(â)[(1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)]. (32)

Utilizing the fact RΩ(â) = Id −PΩ(â) and (32), we get

RΩ(â)[(1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)]
= (1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)
−PΩ(â)[(1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν)].

(33)

Using (28)-(30), (33) turns into
φ(â)+ρ−1RΩ(â)ẑ = −ψ(S (â),T (â))+ρ−1Ψ(µ,ν).

Thus, (ẑ, â,µ,ν) is a solution of EWHE(27).

Now, we shall put forward the following iteration process by taking into consideration (28)-(29) and recalling the
Nadlar’s technique [36].

Algorithm 2. For initial points â0, ẑ0 ∈ B,µ0 ∈ A(â0), ν0 ∈ B(â0), we estimate {ân}, {ẑn}, {µn}, {νn} as under:

φ(ân) = PΩ(ân)ẑn,

ẑn+1 = (1−ρ)φ(ân)−ρψ(S (ân),T (ân))+Ψ(µn, νn),

µn ∈ A(ân) : ∥µn+1−µn∥ ≤D(A(ân+1),A(ân)+πn+1∥ân+1− ân∥

νn ∈ B(ân) : ∥νn+1− νn∥ ≤D(B(ân+1),B(ân))+πn+1∥ân+1− ân∥.

(34)

Theorem 4. Suppose that φ : B→B be k-expanded, δ-Lipschitz continuous mapping;Ψ,ψ : B×B→B and S ,T : B→B

be the single-valued mappings so that ψ(S ,T ) is τ-strongly accretive regarding φ and ς-Lipschitz continuous, Ψ is (σ,υ)-
mixed Lipschitz continuous; A,B : B → CB(B) be θ-D-Lipschitz continuous, ϑ-D-Lipschitz continuous, respectively. If
the retraction PΩ(â) : B→Ω(â) comply with the Assumption C and constant ρ > 0 satisfies:

ρδ+

√
δ2−2ρτ+64ες2+ (σθ+υϑ) < k− ξ,τ <

δ2+64ες2

2ρ
. (35)

Then the iterative sequences {ẑn}, {ân}, {µn}, {νn} produced by Algorithm 2 converges to ẑ, â,µn, νn, respectively, and (ẑ, â,µn, νn)
so that ẑ, â ∈ B,µn ∈ A(â), νn ∈ B(â) solves EWHE(27).
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Proof. By implementing scheme (34), we get

∥ẑn+2− ẑn+1∥ = ∥(1−ρ)φ(ân+1)−ρψ(S (ân+1),T (ân+1))+Ψ(µn+1, νn+1)
− [(1−ρ)φ(ân)−ρψ(S (ân),T (ân))+Ψ(µn, νn)]
≤ ρ∥φ(ân+1)−φ(ân)∥+ ∥φ(ân+1)−φ(ân)−ρ(ψ(S (ân+1),
−T (ân+1))ψ(S (ân),T (ân)))∥+ ∥Ψ(µn+1, νn+1)−Ψ(µn, νn)∥.

(36)

Since φ is δ-Lipschitz continuous, ψ(S ,T ) is τ-strongly accretive regarding φ and ς-Lipschitz continuous, then

∥φ(ân+1)−φ(ân)−ρ(ψ(S (ân+1),T (ân+1))−ψ(S (ân),T (ân)))∥2

≤ ∥φ(ân+1)−φ(ân)∥2−2ρ⟨ψ(S (ân+1),T (ân+1))−ψ(S (ân),T (ân))),
J(φ(ân+1)−φ(ân)−ρ(ψ(S (ân+1),T (ân+1))−ψ(S (ân),T (ân)))⟩

≤ ∥φ(ân+1)−φ(ân)∥2−2ρ⟨ψ(S (ân+1),T (ân+1))−ψ(S (ân),T (ân))),
J(φ(ân+1)−φ(ân)⟩+2ρ⟨ψ(S (ân+1),T (ân+1))−ψ(S (ân),T (ân))),
J(φ(ân+1)−φ(ân)−ρ(ψ(S (ân+1),T (ân+1))−ψ(S (ân),T (ân)))
− J(φ(ân+1)−φ(ân)⟩

≤ δ2∥ân+1− ân∥
2−2ρτ∥ân+1− ân∥

2+64εθ∥ân+1− ân∥
2

= (δ2−2ρτ+64ες2)∥â− b̂∥2.

(37)

Employing (σ,υ)-mixed Lipschitz continuity of Ψ, and Lipschitz continuities of A and B yields

∥Ψ(µn+1, νn+1)−Ψ(µn, νn)∥
≤ σ∥µn+1−µn∥+υ∥νn+1− νn∥

≤ σD(A(â)n+1),A(ân))+υD(B(ân+1),B(ân))

≤ σ(θ+πn+1)∥ân+1− ân∥+υ(ϑ+πn+1)∥ân+1− ân∥

= [σ(θ+πn+1)+υ(ϑ+πn+1)]∥ân+1− ân∥.

(38)

Combining (37) and (38), we obtain

∥ẑn+2− ẑn+1∥ ≤ [ρδ+
√
δ2−2ρτ+64ες2+σ(θ+πn+1)+υ(ϑ+πn+1)]∥ân+1− ân∥. (39)

Since φ is k-expanded, then

k∥ân+1− ân∥ ≤ ∥φ(ân+1)−φ(ân)∥
= ∥PΩ(ân+1)ẑn+1−PΩ(ân)ẑn∥

≤ [∥ẑn+1− ẑn∥+ ξ∥ân+1− ân∥],
(40)

that results in
∥ân+1− ân∥ ≤

1
k− ξ
∥ẑn+1− ẑn∥. (41)

Making use of (41) into (39), we obtain
∥ẑn+2− ẑn+1∥ ≤ Γn∥ẑn+1− ẑn∥, (42)

where Γn =
[ρδ+

√
δ2−2ρτ+64ες2+σ(θ+πn+1)+υ(ϑ+πn+1)]

k− ξ
. Indeed, the hypothesis π ∈ (0,1), results in lim

n→∞
Γn = Γ,

where Γ =
[ρδ+

√
δ2−2ρτ+64ες2+ (σθ+υϑ)]

k− ξ
. By (35), Γ < 1 and hence {ẑn} is a Cauchy sequence in B. Then, we can

find ẑ ∈ B so that lim
n→∞

ẑn = ẑ. We can therefore conclude from (41), that {ân} is a Cauchy sequence in B as well. One can
find â ∈ B so that lim

n→∞
ân = â. Invoking A’s Lipschitz continuity, we manifest that

∥µn+1−µn∥ ≤D(A(ân+1),A(ân))+πn+1∥ân+1)− ân∥

≤ (θ+πn+1)∥ân+1− ân∥.
(43)
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Since the sequence {ân} is Cauchy in B and so is {µn}. In the same manner, we manifest that {νn} is Cauchy in B. Hence
lim

n→∞
µn = µ and lim

n→∞
νn = ν for some µ,ν ∈ B. Since µn ∈ A(ân), then

d(µ,A(â))∥ ≤ ∥µ−µn∥+d(µn,A(â))
≤ ∥µ−µn∥+D(A(ân),A(â))
≤ ∥µ−µn∥+ θ∥ân− â∥+πn∥ân− â∥

= ∥µ−µn∥+ (θ+πn)∥ân− â∥ → 0 as n→∞.

(44)

Thus, d(µ,A(â)) = 0 and hence µ ∈ A(â) and correspondingly, ν ∈ B(â). Consequently, we draw the conclusion that ân→

â, ẑn→ ẑ,µn→ µ and νn→ ν and the continuity of the mappings PΩ(â),φ,ψ,S ,T,Ψ,A,B, we achieve φ(â) = PΩ(â)ẑ, where,
ẑ = (1−ρ)φ(â)−ρψ(S (â),T (â))+Ψ(µ,ν), which amounts to say (ẑ, â,µ,ν) is a solution of EWHE(27).

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

REFERENCES
[1] A. Adamu, D. Kitkuan, A. Padcharoen, C. Chidume, and P. Kumam, “Inertial viscosity-type iterative method for solving inclusion problems with

applications,” Math. Comput. Simulation, vol. 194, pp. 445–459, 2022.
[2] R. P. Agarwal, D. O. Regan, and D. R. Sahu, “Iterative construction of fixed points of nearly asymptotically nonexpansive mappings,” J. Nonlinear

Convex Anal., vol. 8, no. 18, pp. 61–79, 2007.
[3] M. Akram, “On generalized Yosida inclusion problem with application,” Results in Control and Optimization, vol. 11, 2023.

https://doi.org/10.1016/j.rico.2023.100223.
[4] M. Akram and M. Dilshad, “A unified inertial iterative approach for general quasi variational inequality with application,” Fractal Fract., vol. 6,

2022. https://doi.org/10.3390/fractalfract6070395.
[5] M. Akram, A. Khan, and M. Dilshad, “Convergence of some iterative algorithms for system of generalized set-valued variational inequalities,” J.

Funct. Spaces, 2021. https://doi.org/10.1155/2021/6674349.
[6] T. O. Alakoya and O. T. Mewomo, “S -Iteration inertial subgradient extragradient method for variational inequality and fixed point problems,”

Optimization, 2023. https://doi.org/10.1080/02331934.2023.2168482.
[7] F. Alvarez, “Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert

space,” SIAM J. Optim., vol. 14, pp. 773–782, 2004.
[8] C. Baiocchi and A. Capelo, “Variational and Quasi Variational Inequalities: Applications to free boundary problems,” Wiley, New York, 1984.
[9] A. Bensoussan and J.-L. Lions, “Impulse Control and Quasi-variational Inequalities,” Gauthier-Villars, Paris, 1984.

[10] P. Beremlijski, J. Haslinger, M. Koˇcvara, and J. Outrata, “Shape optimization in contact problems with Coulomb friction,” SIAM J. Optim., vol. 13,
no. 2, pp. 561–587, 2002.

[11] M. C. Bliemer and P. H. Bovy, “Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem,” Transportation
Res. Part B, vol. 37, no. 6, pp. 501–519, 2003.

[12] S. S. Chang, A. Ahmadini, Salahuddin, M. Liu, and J. Tang, “The optimal control problems for generalized elliptic quasi variational inequalities,”
Symmetry, 2022. https://doi.org/10.3390/sym14020199.

[13] A. K. Ç̧opur, E. Hacıo˘̆glu, F. Gursoy, and M. Erturk, “An efficient inertial type iterative algorithm to approximate the solutions of quasi variational
inequalities in real Hilbert spaces,” J. Sci Comput., vol. 89, 2021. https://doi.org/10.1007/s10915-021-01657-y.

[14] K. Iqbal, S. M. Muslim Raza, M. M. Butt, H. Ahmad, and S. Askar, “On exploring the generalized mixture estimators under simple random
sampling and application in health and finance sector,” AIP Advances, vol. 14, no. 1, 2024.

[15] S. Dey and S. Reich, “A novel inertial Tseng’s method for solving generalized variational inequality problem,” Optimization, 2023.
https://doi.org/10.1080/02331934.2023.2173525.

[16] M. Dilshad, A. Aljohani, and M. Akram, “Iterative scheme for split variational inclusion and a fixed-Point problem of a finite collection of
nonexpansive mappings,” J. Funct. Spaces , 2020. https://doi.org/10.1155/2020/3567648.

[17] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,”
Math. Program., vol. 8, no. 18, pp. 61–79, 1992.

[18] D. Filali, M. Dilshad, L. S. M. Alyasi, and M. Akram, “Inertial iterative algorithms for split variational inclusion and fixed point problems,”
Axioms, vol. 12, 2023. https://doi.org/10.3390/axioms12090848.

[19] Y. Guo and W. Wang, “Strong convergence of a relaxed inertial three-operator splitting algorithm for the minimization problem of the sum of three
or more functions,” J. Nonlinear Funct. Anal., vol. 41, pp. 1–19, 2021.

[20] B. Halpern, “Fixed points of nonexpanding maps,” Bull. Amer. Math. Soc., vol. 73, p. 957–961, 1967.
[21] P. T. Harker, “Generalized Nash games and quasi-variational inequalities,” Eur. J. Oper. Res., vol. 54, no. 1, pp. 81–94, 1991.
[22] M. Hintermuller and C. N. Rautenberg, “Parabolic quasi-variational inequalities with gradient-type constraints,” SIAM J. Optim., vol. 23, no. 4,

pp. 2090–2123, 2013.
[23] M. Hintermuller and C. N. Rautenberg, “A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints,”

SIAM J. Optim., vol. 22, no. 4, pp. 1224–1257, 2012.
[24] S. Ishikawa, “Fixed points by a new iteration method,” Proc. Amer. Math. Soc., vol. 44, pp. 147–150, 1974.
[25] J. Kalker, “Contact mechanical algorithms,” Comm. Appl. Numer. Meth., vol. 4, pp. 25–32, 1988.
[26] Z. Kan, F. Li, H. Peng, B. Chen, and X. G. Song, “Sliding cable modeling: A nonlinear complementarity function based framework,” Mech. Syst.

Signal Pr., vol. 146, pp. 1–20, 2021.
[27] A. S. Kravchuk and P. J. Neittaanmaki, “ Variational and Quasi-Variational Inequalities in Mechanics,” Springer, Dordrecht, vol. 147, 2007.

79



M. Akram, Iraqi Journal for Computer Science and Mathematics, Vol. 5 No. 2 (2024) p.68-80

[28] M. Kunze and J. F. Rodrigues, “An elliptic quasi-variational inequality with gradient constraints and some of its applications,” Math. Methods
Appl. Sci., vol. 23, no. 10, pp. 897–908, 2000.

[29] H. Ahmad and T. A. Khan, “Variational iteration algorithm i with an auxiliary parameter for the solution of differential equations of motion for
simple and damped mass–spring systems,” Noise & Vibration Worldwide, vol. 51, no. 1-2, pp. 12–20, 2020.

[30] Q. Liu, “A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings,” J. Math. Anal. Appl., vol. 146, no. 2,
pp. 301–305, 1990.

[31] X. P. Luo, Y. B. Xiao, and W. Li, “Strict feasibility of variational inclusion problems in reflexive Banach spaces,” J. Ind. Manag. Optim., vol. 16,
no. 5, pp. 2495–2502, 2020.

[32] P. E. Maingé, “Convergence theorems for inertial KM-type algorithms,” J. Comput. Appl. Math., vol. 219, no. 1, 2008.
[33] P. E. Maingé, “Regularized and inertial algorithms for common fixed points of nonlinear operators,” J. Math. Anal. Appl., vol. 344, pp. 876–887,

2008.
[34] M. A. Malik, M. I. Bhat, and B. Zahoor, “Solvability of a class of set-valued implicit quasi-variational inequalities: A Wiener–Hopf equation

method,” Results in Control and Optimization, vol. 9, 2022. https://doi.org/10.1016/j.rico.2022.100169.
[35] W. R. Mann, “Mean value methods in iteration,” Proc. Amer. Math. Soc., vol. 4, pp. 506–510, 1953.
[36] S. B. Nadlar, “Multi-valued contraction mapping,” Pacific J. Math., vol. 30, no. 3, pp. 475–488, 1969.
[37] M. A. Noor and W. Oettli, “On general nonlinear complementarity problems and quasi equilibria,” Le Mathematiche, vol. 49, pp. 313–331, 1994.
[38] M. A. Noor, K. I. Noor, and B. B. Mohsen, “Some new classes of general quasi variational inequalities,” AIMS Mathematics, vol. 6, no. 6,

pp. 6406–6421, 2021.
[39] H. Ahmad, T. A. Khan, and S.-W. Yao, “An efficient approach for the numerical solution of fifth-order kdv equations,” Open Mathematics, vol. 18,

no. 1, pp. 738–748, 2020.
[40] M. A. Noor and K. Noor, “Iterative schemes for solving general variational inequalities,” Differential Equations & Applications, vol. 15, no. 2,

pp. 113–134, 2023.
[41] M. A. Noor, “Some developments in general variational inequalities,” Appl. Math. Comput., vol. 152, pp. 199–277, 2004.
[42] J. Outrata, M. Koˇcvara, and J. Zowe, “Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Theory, Applications and

Numerical Results,” Kluwer Academic Publishers, Dordrecht, 1998.
[43] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1–17,

1964.
[44] L. F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving differiential equations with an

application to the stresses in a masonry dam,” Philos. Trans. R. Soc. Lond., vol. 201, pp. 307–357, 1911.
[45] D. R. Sahu, “Applications of accelerated computational methods for quasi-nonexpansive operators to optimization problems,” Soft Comput.,

vol. 24, pp. 17887–17911, 2020.
[46] D. R. Sahu, “A unified framework for three accelerated extragradient methods and further acceleration for variational inequality problems,” Soft

Comput., vol. 27, pp. 15649–15674, 2023.
[47] L. Scrimali, “Quasi-variational inequalities in transportation networks,” Math. Models Methods Appl. Sci., vol. 14, no. 10, pp. 1541–1560, 2004.
[48] Y. Shehu and A. Gibali, “Inertial Krasnoselskii-Mann method in Banach spaces,” Mathematics, vol. 8, 2020. https://doi.org/10.3390/math8040638.
[49] N. Song, H. Peng, X. Xu, and G. Wang, “Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based

on variational inequality,” Mech. Mach. Theory, vol. 154, 2020. https:// doi.10.1016/j.mechmachtheory.2020.104053.
[50] G. Stampacchia, “Formes bilineaires coercivites sur les ensembles convexes,” Comptes Rendus de l’Academie des Sciences, vol. 258, pp. 4413–

4416, 1964.
[51] Y. Wang, T. Xu, J. Yao, and B. Jiang, “Sef-adaptive method and inertial modification for solving the split feasibility problem and fixed point

problem of quasi-nonexpansive mapping,” Mathematics, vol. 10, 2022. https://doi.org/10.3390/math10091612.

80


	INTRODUCTION
	PRELUDES AND EXISTENCE RESULTS
	ITERATIVE SCHEME AND CONVERGENCE
	EXTENDED WEINER-HOPF EQUATION

