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ABSTRACT: The novelty of this article is estimating the parameters of Weibull inverted exponential (WIE)
distribution with a constant stress partially accelerated life test (PALT) under adaptive type-Il progressively
censored samples. Moreover, the maximum likelihood estimators (MLES), their asymptotic variances confidence
intervals, and Bayes estimators (BEs) of the model parameters and the acceleration factor are obtained.
Furthermore, the approximate bootstrap and credible confidence intervals of the estimators are acquired. The
accuracy of the MLEs and BEs for the model parameters and the acceleration factor is investigated through the

simulation studies.

Keywords: Partially accelerated life tests; Constant stress; Adaptive type-Il progressively censoring; Weibull
inverted exponential; Bayesian approach; bootstrap confidence interval, simulation study.

1. INTRODUCTION

The developments of technologies and global competition have emphasized the need for more accurate estimation
of reliability of a product, system or component in a shorter time. In standard life data analysis, failure data is examined
to determine the product, component, or system's life characteristics. Collecting lifetimes on extremely dependable
items with very long lifetimes is often exceedingly difficult, but not impossible, because very few, if any, failures can
occur during a restricted testing time under normal conditions. Given this difficulty, reliability practitioners have
attempted to introduce methods to make failures quickly by subjecting the products to severer environmental conditions
without introducing additional failure modes other than those observed under normal operating conditions. ALT is one
of the most modern approaches that used to observe enough failure data, in a short period. In such testing, products are
tested at higher than normal levels of stress (e.g., temperature, voltage, humidity, vibration or pressure) to induce
quickly failures.

PALT is one type of the ALT schemes. The stress loading in PALTSs can be applied in different types, commonly
used types are constant-stress, step-stress and progressive-stress.

In step-stress PALT, the stress on every unit is increasing step by step at prespecified times or simultaneous the
occurrence of a constant number of failures, for a brief review on step-stress model, see Miller and Nelson [1], Bai et
al. [2], Soliman et al. [3] and Balakrishnan et al. [4].

In progressive-stress model, the stress on each test unit is continuously increasing in time. If an ALT contains
linearly increasing stress, for more details see Yin and Sheng [5], Abdel-Hamid and AL-Hussaini [6].

In a constant stress PALT experiment, the total test units are first divided into two groups, the items of one of the
groups are allocated to a normal condition, and the items of the other group are allocated to a stress condition, each unit
is run at a constant level of stress until the unit fails. The constant stress PALTs have advantages in certain aspects
including conducting experiments, modeling distributions, and estimating parameters, the statistical models of most
types of distributions based on constant stress PALTs are more effectively developed compared with those of step-
stress PALTSs. The calculation of parameter estimation of distributions in constant stress PALTS is generally easy to
perform as well, for a brief review on constant stress PALTS, Nelson [7] pointed out that the constant-stress testing has
several advantages. Bai and Chung [8] provided the ML method to estimate the scale parameter and acceleration factor
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for the exponential distribution under two types of PALT which are step and constant stresses in case of type-I
censoring Abdel-Hamid [9] studied the constant stress PALTs for Burr type-XII distribution with progressive type-1I
censoring. Estimating the Burr XII parameters in constant stress PALTs under multiple censored data was considered
by Cheng and Wang [10]. Zarrin et al. [11] analyzed the maximum likelihood method for estimating the acceleration
factor and the parameters of Rayleigh distribution for constant stress PALT. Estimating the generalized exponential
distribution parameters and the acceleration factor under constant stress PALTs with type-1l censoring reported by
Ismail [12]. Kamal et al. [13] used maximum likelihood approach for estimating the acceleration factor and parameters
for inverted Weibull distribution based on type-I censored data. The constant stress PALT under progressive censoring
for the generalized exponential distribution was introduced by Jaheen et al. [14]. Abushal and soliman [15] applied the
maximum likelihood and Bayesian approaches to estimate the parameters of the Pareto distribution under progressive
censoring data for constant stress PALTSs. Estimation and optimum constant stress PALTs for Gompertz distribution
with type-1 censoring discussed by Li and Zheng [16]. Ahmed et al. [17] discussed how to obtain maximum likelihood
and Bayesian estimation of parameters in exponentiated Weibull distribution under partially acceleration life tests. For
units with a Gompertz distribution and units that fail under two independent causes of failure, Alghamdi [18] used a
Type-I generalized hybrid censoring technique. Alam et al. [19] proposed constant stress PALTSs and estimated costs of
maintenance service policy for the generalized inverted exponential distribution. Mahmoud MAW et al. [20] discussed
Estimating the modified Weibull parameters in presence of constant stress PALTS. Inference on Nadarajah-Haghighi
distribution with constant stress PALT under progressive type-Il censoring was reported by Dey S. et al. [21].
Ahmadini A, et al. [22] proposed estimation of constant stress PALT for Fréchet distribution with type-I censoring.
Analysis of the modified Kies exponential distribution with constant stress PALTs under Type-Il censoring was
covered by Nassar M. and Alam FMA [23].

In reliability experiments, the another way to save time and reduce cost is censored data, see Balakrishnan and
Kundu [24]. There are several conventional censoring schemes, such as, type-1 censoring scheme, type-Il censoring
scheme, hybrid censoring scheme and progressive censoring scheme. The inability to remove units at locations other
than the experiment's terminal point is one of the disadvantages of the traditional type-I, type-Il, or hybrid censoring
schemes. Because of that, a more general censoring scheme called progressive censoring has been introduced. The
progressive censoring scheme (Balakrishnan & Aggarwala, [25]) has the flexibility of allowing removal of units at
points other than the terminal point of the experiment. Another advantage of progressive censoring is that the
degeneration information of the test units is obtained from those removed units. Although the scheme is more flexible
in terms of the removal of units, it still has disadvantages. The drawback of the type- Il progressive censoring, similar

to the conventional type- 1l censoring, is that it can take a lot of time to get to the m™ failure time and the running time

T of the experiment is still unknown. In order to assure the number of failures, Ng et al. [26] proposed another
censoring scheme called the adaptive type-I1 progressively hybrid censoring scheme.

This type of censoring scheme can be described as follows: the observed sample size is always M and the R; may

change accordingly during the experiment. If T > X we will get M observed failures before stopping the

m:m:n?

experiment and all R; remain unchanged. If X, . . <T <X Sfor O<j<m, where X,. . .,=0,we

j+l:m:
*
i

will continue to run the experiment until the m™ failure occurs and we adjust R, to R;, where R =0 for

i

i=j+1j+2,..,m-1and R, =n—m— X R, . Thus, this setting can be viewed as a design, in which one
k=1

would ideally like to have M observed failure times for efficiency of inference, and at the same time have the total

time on test to be not too far away from the ideal test duration T . The value of T plays an important role in the
determination of the values of It is used to compromise between a shorter experimental time and a higher chance to

observe extreme failures. We will have a usual progressive type-1l censoring scheme with pre-fixed R; ' S when
T —o00. And, we will have a conventional type-1l censoring scheme with R, =...=R,;=0and R, =n—-m
when T —0.

In addition to this introductory section this article includes some more sections too. In section 2 a description of the
lifetime model and assumption are presented. The MLEs of model parameters of our model and the acceleration factor
are derived for constant stress PALT using adaptive progressive type-Il censored data in section 3. In section 4 the BEs
of model parameters using Markov chain Monte Carlo simulation method are obtained. In Section 5 intervals
estimation of the model parameter and acceleration factor are described such as asymptotic, bootstrap and credible
confidence intervals. Numerical studies to illustrate the theoretical results are given in section 6. The conclusion is
made of the study in section 7.
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2. Description of the model

2.1. The WIE distribution: As a lifetime model

Chandrakant et al. [27] introduced a three-parameter WIE distribution, which is considered an extension of the inverted
exponential distribution. The WIE distribution is flexible in nature and can take several shapes, such as J-reversed,
symmetric, and positively skewed as well. Additionally, the shape of the WIE distribution is either be decreasing or
unimodal. The shape of the hazard function can be decreasing, increasing and an inverted bathtub (depending upon the
values of the parameters). According to the previous features, the WIE distribution can be used to fit different data in
several vital fields, such as engineering, industry, biomedical studies, and medicine, to contribute to solving many
obstacles. In our study, the failure times are assumed to be from the WIE (A, y,77) distribution. For some statistical

properties as well as the properties of order statistics of the WIE distribution.

For conducting a constant stress PALT experiment, the total test items are divided into two groups. The items of one
group are allocated to the normal condition and the items of the other group are allocated to the stress condition. The
lifetime of the test unit under the normal and stress conditions is assumed to follow the WIE distribution. The
probability density function (PDF) of the WIE distribution and the cumulative distribution function (CDF) of the
lifetime of a unit for the normal condition

_’ti iy ei%” '
f(t):ﬂ#/’? (e ') e [1et]

; , )
and
£
F(t)=1-e '/, )
the survival and hazard rate functions of the WIE (A, ¥, 77) distribution are
{2
s, (t)=e ), ©)
and
A ey
1(t) _Ar (e 1) (@)

t? (1_e‘%)7+1 '
The hazard rate of an item tested at accelerated condition is given by hT2 (t) = ath (t) , where is an acceleration factor

satisfying o >1. Therefore the hazard rate function, survival function, CDF and PDF under accelerated condition are
given, respectively, by

h ()= %2, €Y

) 5
t2 (1_67%])7*1 ( )

s (t)= exp(— I hz(z)dz): e_al[lef‘] : (6)

(t)=1-e ‘=7, (7)

and

¢ (t):aﬂﬂfﬂx ) Xe_al[;l’] ®)
T, t2 (l—e_;l)7+l l

where T, and T, represent lifetimes of units under the normal condition and the stress condition, respectively, 4, y is
the shape parameter, 77 is the scale parameter, & is the acceleration factor,and A >0, y >0, >0, a >1.
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2.2. Constant-stress PALT

According to constant stress PALTs under adaptive progressive type-1l censoring, groupl consists of n, items
randomly chosen among N test items is subjected to use condition and group 2 consists of N, =N—nN, remaining

items are subjected to an accelerated condition. The observed sample size is always M; and the Rji, i=1..., m;,

j =1,2 may change accordingly during the experiment. If T > ij o

> we will get m; observed failures
I |

before stopping the experiment and all R, remain unchanged. If Xjkj -

ij j <T < Xj(kj+l): m; :n; for

: nj

0< kj <my, where on — =0, we will continue to run the experiment until the mtjh failure occurs and we
" I |

k

i
adjust R;; to Rj;, where R; =0 fori= kj +1, kj +2,...,m; =1 and R:“. =n;—m; —> R, . The joint PDF for
1=1

ji’

ijj

Xt mn, <X mn, <o <Xjn' o o, iSgiven by
2 m k; m;-1
Rji Rji i
L(avl:%nl)_()oc H]:I 1:(in im; nj)l—ll[l_ F(in m; nl)] g 1:[1[1_ F(in imj nl)] J [1_ F(XmJ imj nl)}QJ
j=l i= i= i=k+
9
2 mj kj ER ( )
Rii S—m;— i
x H 1:(in m; :nj)H[l_ F(in im; :nj)] “[1_ F(ij m; :nj)]wJ et
j=l i=1 i=1
for _OO<Xj1: mj ©n; < Xj2 tmpoin <..< Xjkj smpon <T< Xj(kj+1)mj on; <Xj(kj+2): mj :n; <"'<ijj Lmpoing <.

3. Maximum likelihood estimation

In this section, the MLEs of the model parameters are constructed. Let Xjm, = Xjm, be the observed values of

: mj : nj
the lifetime obtained from adaptive progressive type-11 censoring under constant stress PALT.
The likelihood function for group 1 is given by

(2 7, i) e [[250e% @ -1y 7 xexp(-A6e ™ -1)7)

i=1 i

><1k_=1[exp(—/1(exzi —1)7):|R1i X [exp(—/i(e i —l)y)Tml ,

(10)
kl
where X, = (X , X ,X X ), A, =n-m -2R;,
The likelihood function for group 2 is given by
L(at. 2, 7, n1%,) “lfﬂeﬁ(e# ~1) 7 xexp(—ade™ ~1)7)
- i1 Xy
ks 0 Rai n Amg
xH[exp(—aﬁ(e i —1)‘7)} X [exp(—aﬂ(e 2 —1)‘7)} ,
=1 (11)

where X, =(X_,X_,X X mz), A, =n,—m, =2 R,,

.......

based on Egs. (10) and (11) The likelihood function for group 1 and group 2 can be written in one equation as follow:
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2 M j-1 . . o
L (a4 7 n1x) < [T[[2 ’17’7e*“ @ —1) " xexp(—a A 1))
j=li=1 J|
k; ) s Rii ) _n_ Ami
xH[exp(—a“%(e”‘ —1)‘7)} {exp(—oc"l/l(ex”“j —1)‘7)} :
i=l (12)
K;

where X =(X ,X ,X X ), Anj:n'_mj_zRJi'

""" im ! i-1

It is easier to maximize the natural logarithm of the likelinood function log L(a,i, 7, 1l )_() than the likelihood
function. Therefore, the log-likelihood function is given by

Ha vy mlx)=logL (e, 7, nlx) = {m log(Ayn)+(j ~1)m; log(er) - (7+1):n§jllog(e*7'—l)

=R

m K ) L . 1
+ z Lo AYe7 -7 =Y R AT )7 -A, &A™ —1)-yj.
=1 i1 J

(13)
The first order partial derivatives of log-likelihood function with respectto 77, A, 7,and « are given by:
O _ &My jashy - S iy - iy -
5—21(7—05 EIW 7(in,77)—iz_l:Rjia W 7(in,77)—AmJa w 7(ij ,77) , (14)
2 m; m;
o0 _ mj -1 -
3—7_12_1[7—§1logw (x;.7) +e’ AZW 7(x ) logW (x,7)
K| _ _
+ YR W 7 (x,n)logW (x,7) +A, @ (xmj,n) logW (xmj,n)}
i=l
(15)
2 mj Eve ) m;
g_f]:Z Z (7/+l)z i +a1*1/17/21W1(in,7,77)
] = =1 (ex“ l) i=
k; . m; .
+ZRiiarl,17/i§W1(X i ,7/,77) +Amjanlﬂ,})\Nl(X m, ,7,77)}
i=1 =
(16)
ot _m
—2_7(X,1, A, 7, 17), (17
oa  «
where
7 1 2 =
(y 77):( ’ )1W1(y17/177):_ y( y_l) 71
y
m2 n k2 n n (18)
Z(Xy, Ay 7o )= A2 =) + > RuAE%Y -7 + A A(e™ -1)7.
=1 =) ’
We can show from the likelihood equations that, for given A, ¥ and 77, the MLE of & , from Eq. (17), is
—-m
a(A, 7, )=t (19)
Z(Xzi’ﬁ“v 7 77)
By replacing @ by d(ﬂ,, 7, 77) in (14), (15) and (16), we obtain the profile likelihood equations for A, y and 77.
Once A, 7 and 7 are obtained as the solution of the system of equations 2 = g—ﬁ = g—f? =0
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4. Bayes estimation

This section deals with obtaining the Bayesian estimation for the unknown parameters when the data are obtained from
WIE model under different loss functions based on constant stress PALT under adaptive progressive type-Il censored
data.

4.1. Prior and posterior distribution

In practical works the parameters cannot be treated as a constant during the life testing time. Therefore, considering the
lifetime model's parameters to be random variables would be accurate. The type of prior information we have access to
frequently determines the prior distribution that is chosen. When we don't know much or anything about the parameter,
It is best to employ a non-informative prior (NIP). In many practical situations, the information about the parameters

are available in an independent manner. In this section, we take an informative prior distribution for the parameter A4
as the gamma with the scale parameter @ and shape parameter b , and the parameters 7, 7 and & have NIP, thus

7, (1) c 2™, A>0,a>0,b>0.

1
my(y)oc =, y>0.
v
1
my(n) <=, n>0.
n

7, () oci, a>1.
a

In case of NIP, we take a—>0 and b — 0.
Therefore, the joint prior of the parameters A, ¥, 7 and @ can be expressed by
g, 7, na)c A2y e, 4>0,7>0,17>0, a>1. (20)
The joint posterior density function of the parameters A, 7, 77, can be expressed by using L(a,ﬂ, 7, | )_() and
g(4, 7, n, a) from Egs. (12) and (20), we get after simplification, the posterior distribution as
m
70 (0t A 7 7]0) o0 AT ey e Xfﬂ—'[#ﬁ(eﬁ gy

ji

j=1i=1
2 (m5 ua ki e .
Xexp{—i(b+2(2a”(ex“ -)7+Xa' R (" _1)7j+aAm~ @™ _1)yﬂ_
= = i

(21)
We noted that the Bayes estimators' form is implicit and cannot be analytically resolved. By establishing a Markov
chain Monte Carlo (MCMC) with a limiting distribution that is equal to the target. In such a situation, BEs and highest
posterior density (HPD) credible intervals of the parameters will be computed using the MCMC methods using Gibbs
sampler and Metropolis-Hastings (see Hastings [28]) algorithm.

Thus for implementing the Gibbs algorithm, the full conditional posterior densities of A4, », 7 and & are given by

7Z'a(0(|/1, Vs ﬂ’i) ocamzflxeXpI:—OCT (X2i ’ﬁ” Vs 77):| ! (22)
where,
m, T k, T 7
T (x2i Ay 7, n):ix(Z(e“' -7 +2XR,€F =) +A, (™™ —1)‘7} (23)
i=1 i=1 2

7[1 (ﬂ‘ | a, 7! 77!&) o« /1m1+m2+a_1

2 mj . _n kj ) o XU_
X exXp —/1£b +Z[Za"l(e”‘ )7 +Xa' "R " —1)‘7]+aAm_ e —1)‘7] :
j=1li=1 i=1 J

(24)
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2 My o N
72'7(}/|0!,/1, n’)i)OCJ/mﬁmz_lHH(ex“ —l) y-1

i
XW%: @+Z{§a1@" ny+§a“Rﬂvi4>q+aAm@%_gyﬂ,
(25)
and
7w, (vl A, y,x) e g™ xHH te et -1y
i
xeXp|:—/1(b +j§1(imzjlaj‘1(e*7' - +iijlaj‘lei e —1)‘7]+0!Amj @ _1)_7]}_
(26)

Therefore, samples of & and A generated by using a gamma distribution. However, the posterior distribution of ¥
and 1) cannot be reduced analytically to a well-known distribution, and therefore it is not possible to sample directly by
standard methods. Therefore, we use the Metropolis-Hasting algorithm with the normal proposal distribution to
generate a random sample from the posterior densities of 4, ¥, 7 and « . We use the following algorithm to

compute the BE of 4, 7, 17 and

Algorithm (1)

Step 1: Start with an (A, @ @ o).

Step 2: Set j=1.

Step 3: Generate ! from Gamma(mz,T(XZi,/i(H), y U 77(]_1))), where T(XZi,/i('), 7®, 17(')) is as given
by Eq. (23).

Step 4: Generate A from

2 M LA ki A L
Gamma (m,m,,(b+> (o' (e -1 +ZO€HRji(exji -D7)+aA, €™ -D7)).
[y i1 j

Step 5: Using the proposal distribution and the Metropolis-Hasting algorithm, generate 7/(1) from
(0 | 5D () 5,(i-1) :
7, (a2, 707, x) , as follows:

e Generate 7(*) from the proposal distribution q(y).
e Calculate the acceptance probability

(7 Ia(”i ' X)Q(7 Uy
7, (e, A9, 70 x)a(™) |

e Generate from U from Uniform (O,l). us< p(;/,)/ ) accept the proposal and set }/(*) zy(j) . Otherwise,
i-1)

p(7, 7)) = min| 1,

reject the proposal and set }/(*) = }/(
Step 6: Repeate the previous step, using Metropolis-Hasting algorithm, generate n(j) from
(77 1@ 20 5 0)x) with the N (577, 5e (7)), proposal distribution.
Step 7: Set j =] +1.
Step 8: Repeat Steps 2 through 6, N times, and obtain the posterior samples l(j), y(j), n(j), and a(j),
j=12,3,..,N .
The initial iteration value in this study is MLEs rather than arbitrary estimation. These samples are used to compute the
BEs, and to construct the HPD credible intervals for A,y,7 and & .
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4.2. Bayes estimation based on balanced loss function

In Bayesian approach, to select a single value that represents the best estimate of an unknown parameter, one must
specify a loss function. This paper proposes the use of balanced loss function, which creates a balance between
classical and Bayesian approaches, and provides an estimate that is a linear combination of ML and BEs. Ahmadi et al.
[27] suggested the use of so-called balanced loss function, to be in the form

L0460, 6) = 20(0) (8, 8)+ (1~ )a(0) p(6, 5). (27)
where a)e[O,l), q(H) is a suitable positive weight function and p(é’, 5) is an arbitrary loss function when
estimating @ by & . The parameter &, is a chosen prior estimator of &, obtained for example from the criterion of
ML, least squares or moment among others. A general development with regard to BEs under LNM0 (9, 5) is given,

namely by relating such estimators to Bayes solutions to the unbalanced case, ie., L, , s (0,5) ; with =0,

Lp’wﬁ0 (0,5) can be specialized to various choices of loss function, such as for squares error (SE) and linear
exponential (LINEX) loss functions.

By choosing p(@, 5): (5—9)2 and q(&):l, the balanced loss function (27) reduced to the balanced SE loss
(BSEL) function, in the form

5,,(0,6)= (6 -6, +[L-w)5-6), (28)
and the corresponding BE of the function € is given by
Ons = WS, +(1— w)E(0] X). (29)

By choosing q(@):l and p(9,5)=e°(5‘9)—c(5—9)—1 in Eq. (27) reduced to the balanced LINEX loss
(BLINEXL) function in the form:

O, = —Cllog [a)e’c‘s" +(1-w)E (e‘w Iﬁ)], (30)

where C # 0 is the shape parameter of BLINEXL function.

Using Egs. (27) - (30) the approximate BEs under the BSEL and BLINEXL functions for &= ( A,y,n,a) are

given, respectively by:
N

Z 210

O, =w 0, +(1- a))%, (31)

and

i g-20”

. 1 ; _
0 =—Zlog| we®™ +(1—-)=ML | 32
L= log (1-o) N (32)

5. Interval estimation

In this section, the approximate, Bootstrap and credible intervals of the parameters A, ¥, 17 and & are derived.
5.1. Asymptotic confidence interval

In this subsection, the approximate confidence intervals of the parameters are obtained based on the asymptotic
distributions of the MLEs of the elements of the vector of unknown parameters. It is known that the asymptotic
distribution of the MLEs of A4, 7, 17 and « is given, the exact solution for the confidence intervals is not possible

since the distributions of MLEs are not explicitly defined here. However, one can obtain the asymptotic confidence

intervals using large sample property of the MLE.
)

Under this property, the asymptotic sampling distribution of | 7 —y | is NS(O, Q’l), where, € is the observed
n-n

Fisher information matrix and which is defined as follows:
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o4 9% M _ U
A2 O0A0y o0Aon 0Aoa
_ ok _ o 8 _ ok
0yOA oy? oyon 0yoa
Q= 0% 0% o2 0% ! (33)

- ono. - onoy on? onoa
o 3% _ o«

P) P) 2 P

Oaoi 0ady Oadn da (A, 7. 5.8)

whose elements are given in Appendix.
The diagonal elements of ot provides the asymptotic variances for the parameters A, 7, 77 and & respectively.
Then two-sided 100(1- %)% normal approximation confidence interval of A, ¥, 17 and @ can be obtained as

( ‘ﬁ%\z@z?e(@ , ( & zg ?e(@ , ( %&z@z?m and ( SFozg ?e(@ ,

(34)

Where Se(.) is the square root of the diagonal element of Al corresponding to each parameter, and Zg4,, is the
quantile 100(1—$/2)% of the standard normal distribution.
5.2. Bootstrap confidence intervals

In this section, confidence intervals based on the parametric bootstrap method for the unknown parameters A, 7, 77
and « using percentile interval are derived, for more details see Efron and Tibshirani [29]. The following algorithm is
construct to obtain a bootstrap sample.

1. From the original two sample {X,, X,,..., X,} compute MLEs A, 7,0, and & .

2. Using ﬁt, 7?, ﬁ, and & to generate a bootstrap sample {Xl*, XZ,..., X:} and compute the bootstrap estimate of
A, 75, 0 and &

3. Repeat steps (1)-(2), B times and arrange each estimate in ascending order to obtain the bootstrap samples
(52 By o Fo YA FL0 Prve YA 31 o BaYan0 {65, G5, v G3 )
The approximate 100(1—£)% confidence interval for &, is given by

(éi’EN%)’ éi?l—N%))’ 1=1234,

where & = I, 6;=7", 6, =i", 0, =&".
5.3. Credible confidence intervals
A 100 (1— %)% Bayesian credible or posterior interval for a random quantity & is the interval that has the posterior
probability (1—.9) that € lies in the interval.
The following algorithm is performed to obtain credible confidence intervals of 4, » ,n7 and «.

Algorithm (2)

1. Repeat steps (1) to (6) in algorithm (1)
2. Then using the algorithm proposed by Chen and Shao [30], the Bayesian credible interval for the parameter is
obtained by using the generated MCMC samples. By arranging the posterior sample H(J), j=123...,N

as Oy <G, <..< ‘99(N) , the 100(1—9)% HPD credible intervals for € = (4, ,n,) is given by

(‘9(J)’ 0(J+[N(1—9)]))’ (35)
where J is chosen such that

Oo-inas) — o) = M0 (G oy) — O} i =12, N,

I<i<9N

6. Numerical exploration

To show how the suggested method may be used, we perform out a simulation study and examine an example in this
section.
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6.1. Simulation study

To investigate how the ML and BEs respond in terms of their mean square errors (MSEs) and coverage probabilities
depending on various sample size choices a simulation study is carried out, let n, =20,2530,40 and

n, =20,25,40,50 ; different effective sample sizes, m, =10,15,18,20 and m, =10,18,20,25; and 18
different censoring schemes; details of the schemes are given in Table 1. Different progressive censoring schemes(CSs)
are considered with notation that (5,0%) means (5,0,0,0).

In all cases we have used A=0.08, y=0.3, =02, « =15, and T =0.85 . For a given n;, m;, T,

A, ¥ ,n, a and schemes Rji, i=12,..., m;, j =12, using the algorithm proposed by Ng et al. [26] . we have
generated a sample for a given CS.

1. For j=1,2  generate M, independentand identically distributed random numbers ( Ujl, sz, ...,Ujmj )

from uniform distribution U[0,1] .

mj
2. Determine the values of the censored scheme R ;, 1=12,.., m; , such that Z R;,=n;-m,, j=12.
i=1

1{i+ J R]h]
3. set E;=U;" """ J i=12..,m, j=12

4. Generate the progressive type-11 censored sample ( U}‘l, U}‘z, ...,U}mj ), where U}“i =1- H En
h:mj—i+l

i=12,.,m, j=12

5. The order observations X;; . , - , are calculated as follows
tm;

ijinj

X 6 @gWYQ = @ADL W 1O L, 2,..., 1, jE1,2

6. Determine the value of kj , Where X <T< Xj(

jompsnj J(
X

kj+l):mj 1nj kj+2):mj 1 nj

Imj o mj :nj

7. Generate the first m; —k; —1 order statistics from a truncated distribution  (x;)/[1— F(ij+1)] , with sample

k;
size(nj—ZRji—kj—l)as Xj( yoe
i=1
We calculate the acceleration factor and the MLEs of the unknown parameters A, ¥ and 77 and the acceleration
factor ¢ using the generated data. The Newton-Raphson method is applied for solving the nonlinear system to obtain

the MLEs of the parameters and compute the approximate intervals. We also compute the BEs of the unknown
parameters based on the MCMC sampling procedure. For BE, we are used informative prior for the parameter A, we

have used the hyper parameters value as @ =0.1 and b =1. Based on 1000 replications, we calculate the average
estimates (AE) and the average MSE of the estimations. Results are reported in tables (2-5). In all cases BSEL and
BLINEXL functions, with @ =0.2,0.8, have been used for computing the BEs.

’ i .
kj+2): mj :nj ij Tmjoinj

The following points are quite clear from the tables (2-5). As sample size (nj, J=12) increases, the MSEs of
estimates of all the unknown parameters decrease. For fixed N i J =12, the MSEs of estimators of model parameters

decrease as M, J=1,2 increases. From tables 6 and 7 we discover that the Bayesian credible intervals and

approximate confidence intervals' coverage probability are relatively near to the nominal level. Also, in most cases, the
Bayesian credible intervals are marginally shorter length than that of the approximate confidence intervals. Hence, we
recommend to use Bayesian credible intervals over approximate confidence intervals. When @ = 0.8 all results of
BEs under both BSEL and BLINEXL functions for the parameters are quite similar to corresponding MLEs.
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6.2. Numerical example
The simulated data observed based on n, =35, n, =45, m =25, m, =35, 1=0.1, y=0.25 n=0.35,

a=15, R =(0",1°,0) and R, =(0%, 1°, 0°) . The LEs of model parameters obtained by using N
Maximize option of Mathematica 10 are

1=0.0912, y=0.2423 17=0.3085 & =1.5057.

The 95% asymptotic confidence intervals for the parameters are:

0.0641<1<0.1113 0.1604<y<0.2792, 0.2710<7<0.3874 and 1.1156<x <1.9983

The bootstrap estimate of model parameters are obtained as

1=0.0841, 7=0.1984, n=0.3421 a=1.5447.

95% bootstrap confidence intervals for the parameters A, , 7 and the acceleration factor & are
0.0754<1<0.1089 0.1784<y<0.2867, 0.2548<77<0.3751 and 1.1234<a <2.0097,

we compute the BEs of A,y , i and the acceleration factor & . Since we do not have any prior information, we
assume a=b=0. Figure 1 shows the trace plots of 10000 MCMC samples for posterior distribution of 4,7, 17
and « . It show that the MCMC procedure converges very well. Therefore.

Hence, under BSEL function (w=0), we compute the approximate Bayes estimates of A,y , 7 and & using
MCMC method and they are

A=00794 7=0.2378 #=0.3512 G, =1.4236,

and the associated 95% symmetric credible intervals are given by
0.0550<14<0.1851, 0.2214<y»<0.3810, 0.1845<7<0.6421 and 1.0210<a <1.8940, ,

Under BLINEXL function (@=0), with ¢, =1 and C, =5, we compute the approximate BEsof A,y , 17 and
a , and they are

1=00921, 7=0.240] #=0.3608 d&, =1.4006

A=0.1105 7=0.2604 7 =0.3508 ¢, =1.3169

We also compute the approximate BEs of 4,7, 77 and « under both BSEL and BLINEXL function with
o =0.2,0,8 and they are in Table 8.

7. Concluding remarks

In this paper, we have considered the constant stress PALT when the observed data come from WIE distribution under
adaptive progressive type-1l censoring. We derived ML and Bayes estimators of the parameters and the acceleration
parameter using NIP and gamma informative priors under both BSEL and BLINEXL functions. These estimates cannot
be obtained in closed form, but can be computed numerically. Asymptotic confidence intervals based on observed
Fisher information and HPD credible intervals of the parameter are developed. We made use of MH algorithm for BE.
A simulation study was carried out to compare and contrast how well the suggested approaches performed for various
sample sizes and CSs. Based on the simulation study, we find that in terms of MSEs, the Bayes estimates perform
better than MLEs. Also, In terms of average length and coverage probability, the HPD credible intervals based on the
Metropolis-Hastings algorithm perform better than asymptotic confidence intervals. Furthermore, As sample size
increases, the length of the confidence interval likewise shortens, and for all sets of parameters taken into consideration,
the coverage probability is about equal to the nominal value.
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Figure 1. MCMC iterations and the posterior samples’ kernel histograms for each parameter.

Table 1. Several CSs for the simulation study.

CS nn nn m m R R, CS nm n m m R R,
[1] 30 40 15 20 (15,0 (20,0 [10] 20 20 10 10 (10,0 (10,0°)
[2] (1% (1?9 [11] (1) (1)
3] 0415)  (0020)  [12] (0°,10)  (0°,10)
[4] 30 40 20 25 (10,0®) (150  [13] 20 20 18 18 (12,07) (12,0
5] (50%5)  (10,085) [14] (6,01,6) (6,0',6)
6] 0°,10)  (0%,15)  [15] 07,12)  (07,12)
[71 40 50 20 25 (20,0®)  (250°)  [16] 25 25 18 18 (7.07) (7,0
8] (10,01%,10) (13,02,12) [17] (4,0153)  (4,013)
[9] (0',20) (0%4,25) [18] (07,7) (07,7)
Table 2. AE and MSEs for ML and BEs under BSEL and BLINEXL functions of a.
CS MLE BE
BSEL BLINEX
=0 ®=0.2 ®=0.8 =0 ®=0.2 ®=0.8
c=1 c=5 c=1 c=5 c=1 c=5
[1] 1.3970 1.4527 1.4415 1.4081 1.3251 1.3311 1.3193 1.4417 1.4024 1.3805
(0.0494) (0.0282) (0.0394) (0.0436) (0.0440) (0.0401) (0.0460)  (0.0414) (0.0530) (0.0499)
[2] 1.4115 1.3421 1.3560 1.3976 1.322 1.2521 1.3389 1.2735 1.3925 1.3633
(0.0501) (0.0309) (0.0359) (0.0440) (0.0297) (0.0415) (0.0313)  (0.0380) (0.0433) (0.0382)
[3] 1.4883 1.4315 1.4428 1.4769 1.4106 1.2387 1.4253 1.2593 1.4718 1.4441
(0.0557) (0.0487) (0.0333) (0.0444) (0.0329) (0.0468) (0.0343)  (0.0430) (0.044)  (0.0405)
[4] 1.5122 1.5396 1.5341 1.5177 1.5181 1.4424 1.5168 1.4540 1.5133 1.4953
(0.0414) (0.0405) (0.0413) (0.0415) (0.0331) (0.0322) (0.0347)  (0.0301) (0.0306) (0.0307)
[5] 1.5052 1.4049 1.4250 1.4851 1.2874 1.2252 1.4096 1.2496 1.4802 1.4517
(0.0427) (0.0374) (0.0365) (0.0396) (0.0398) (0.0335) (0.0377)  (0.0771) (0.0371) (0.0365)
[6] 1.5162 1.2918 1.4167 1.4913 1.2752 1.2165 1.4016 1.2426 1.4861 1.4545
(0.0428) (0.0386) (0.0365) (0.0390) (0.0392) (0.0354) (0.0379)  (0.0379) (0.0384) (0.0399)
[7] 1.5071 1.5543 1.5449 1.5166 1.5329 1.4572 1.5276 1.4655 1.5122 1.4952
(0.0510) (0.0473) (0.0476) (0.0497) (0.0435) (0.0377) (0.0447)  (0.0392) (0.0492) (0.0467)
[8] 1.4993 1.4425 1.4539 1.4880 1.4260 1.2672 1.4400 1.3865 1.4840 1.4627
(0.0382) (0.0261) (0.0276) (0.0348) (0.0274) (0.0366) (0.0281)  (0.0336) (0.0344) (0.0320)
[9] 1.4992 1.4278 1.4421 1.4850 1.4127 1.3586 1.4291 1.3786 1.4810 1.4593
(0.0346) (0.0231) (0.0240) (0.0308) (0.0248) (0.0349) (0.0249)  (0.0314) (0.0305) (0.0284)
[10] 1.5242 1.5891 1.5762 1.5372 1.5472 1.4149 1.5423 1.4299 1.5285 1.4920
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(0.1024) (0.0848) (0.0872) (0.0978) (0.0724) (0.0589) (0.0777) _ (0.0617) (0.0957) (0.0830)
[11] 1.5115 1.4637 1.4733 1.5019 1.4322 1.3303 1.4468 1.3525 1.4942 1.4508
(0.0846) (0.0428) (0.0494) (0.0744) (0.0430) (0.0582) (0.0482)  (0.0550) (0.0727) (0.0599)
[12] 1.4896 1.4414 1.4510 1.4800 1.4121 1.3163 1.4264 1.3377 1.4728 1.4324
(0.0821) (0.0439) (0.0498) (0.0727) (0.0453) (0.0625) (0.0497)  (0.0590) (0.0715) (0.0614)
[13] 1.5200 1.5269 1.5255 1.5214 1.5021 1.4163 1.5056 1.4325 1.5163 1.4933
(0.0637) (0.0558) (0.0573) (0.0620) (0.0520) (0.0490) (0.05416) (0.0490) (0.0611) (0.0563)
[14] 1.5147 1.4746 1.4827 1.5067 1.4515 1.3718 1.4637 1.3925 1.5017 1.4750
(0.0577) (0.0462) (0.0481) (0.0549) (0.0453) (0.0512) (0.0468)  (0.0484) (0.0542) (0.0494)
[15] 1.5180 1.4387 1.4546 1.5021 1.4168 1.3409 1.4361 1.3653 1.4968 1.4661
(0.0553) (0.0483) (0.0485) (0.0527) (0.0490) (0.0596) (0.0483)  (0.0541) (0.0519) (0.0474)
[16] 1.5276 1.5494 1.5450 1.5320 1.5247 1.4393 1.5252 1.4534 1.5270 1.5054
(0.0456) (0.0350) (0.0337) (0.0379) (0.0349) (0.0324) (0.0401)  (0.0403) (0.0430) (0.0423)
[17] 1.5044 1.4410 1.4537 1.4917 1.4200 1.3469 1.4360 1.3685 1.4866 1.4581
(0.0497) (0.0473) (0.0367) (0.0455) (0.0363) (0.0379) (0.0370)  (0.0379) (0.0449) (0.0411)
[18] 1.4866 1.3694 1.3929 1.4632 1.3510 1.2865 1.5095 1.3127 1.4577 1.4246
(0.0595) (0.0524) (0.0443) (0.0463) (0.0509) (0.04942) (0.0465)  (0.0403) (0.0469) (0.0408)
Table 3. AE and MSEs for ML and BEs under BSEL and BLINEXL functions of A.
CS MLE BE
BSEL BLINEX
=0 ®=0.2 ®=0.8 =0 ®»=0.2 ®=0.8
c=1 c=5 c=1 c=5 c=1 c=5
[1] 0.0622 0.0764 0.0736 0.0850 0.0854 0.0823 0.0891 0.0688 0.0861 0.0742
(0.3656) (0.2477) (0.2575) (0.3782) (0.1785) (0.1595) (0.1946)  (0.1495) (0.3338) (0.1494)
[2] 0.0860 0.0809 0.0828 0.0884 0.0754 0.0897 0.0841 0.0813 0.0848 0.0832
(0.3792) (0.2475) (0.2689) (0.3479) (0.2402) (0.2305) (0.2599)  (0.2070) (0.3049)  (0.1405)
[3] 0.0867 0.0856 0.0858 0.0865 0.0740 0.0610 0.0745 0.0614 0.0860 0.0734
05256  (0.3523) (0.3809) (0.4849) (0.2186) (0.2333) (0.2429)  (0.2098) (0.4064) (0.1453)
[4] 0.0861 0.0869 0.0734 0.0628 0.0607 0.0826 0.0570 0.0730 0.0607 0.0745
(0.2314) (0.1684) (0.1873) (0.2158) (0.1577) (0.1463) (0.1668)  (0.1380) (0.1944) (0.1521)
[5] 0.0865 0.0743 0.0747 0.0861 0.0632 0.0809 0.0738 0.0613 0.0878 0.0743
(0.3683) (0.2301) (0.2465) (0.3294) (0.1878) (0.1563) (0.1927)  (0.2096) (0.2881)  (0.2090)
[6] 0.0850 0.0738 0.0741 0.0951 0.0729 0.0762 0.0733 0.0711 0.0749 0.0731
(0.3209) (0.2260) (0.2744) (0.3122) (0.2206) (0.2153) (0.2552)  (0.2080) (0.2299) (0.2436)
[7] 0.0899 0.0827 0.0816 0.0812 0.0859 0.0682 0.0847 0.0614 0.0895 0.0740
(0.2984) (0.2558) (0.27417) (0.2772) (0.1670) (0.1400) (0.1766)  (0.1338) (0.1786) (0.1471)
[8] 0.0812 0.0828 0.0847 0.08160 0.0717 0.0616 0.0753 0.0620 0.0875 0.0686
(0.3027) (0.2554) (0.2710) (0.3014) (0.1714) (0.1872) (0.1859)  (0.1684) (0.1763) (0.1267)
[9] 0.0879 0.0767 0.0789 0.0857 0.0623 0.0923 0.0408 0.0658 0.0529 0.0734
(0.3010) (0.2611) (0.2847) (0.2986) (0.2187) (0.2096) (0.2315)  (0.1879) (0.2515) (0.1302)
[10] 0.0842 0.0904 0.0901 0.0882 0.0864 0.0612 0.0867 0.0616 0.0878 0.0636
(0.1103) (0.0824) (0.1100) (0.1102) (0.1119) (0.1181) (0.2096)  (0.2279) (0.2533) (0.1844)
[11] 0.0983 0.0976 0.0978 0.0982 0.0644 0.0588 0.0802 0.0566 0.0712 0.0626
(04332) (0.2354) (0.3041) (0.3427) (0.3618) (0.3257) (0.4169)  (0.2946) (0.4184) (0.1902)
[12] 0.0981 0.0976 0.0977 0.0980 0.0743 0.0504 0.0748 0.0641 0.0769 0.0625
(0.2954) (0.2505) (1.1089) (1.2438) (0.3727) (0.3420) (0.4277)  (0.3104) (0.4197) (0.2027)
[13] 0.0765 0.0970 0.0769 0.0966 0.0853 0.0620 0.0855 0.0655 0.0624 0.0641
(0.3143) (0.2357) (0.3008) (0.3100) (0.1468) (0.1143) (0.2099)  (0.1693) (0.3071) (0.1490)
[14] 0.0918 0.0860 0.0871 0.0860 0.0720 0.0528 0.0755 0.0664 0.0873 0.0657
(0.3526) (0.2389) (0.3044) (0.3396) (0.1974) (0.2066) (0.2034)  (0.1947) (0.3024) (0.1395)
[15] 0.0815 0.0775 0.0805 0.0887 0.06491 0.0578 0.0949 0.0615 0.0852 0.0620
(0.3793) (0.2858) (0.3000) (0.3561) (0.2085) (0.2040) (0.2281)  (0.2264) (0.3103)  (0.1408)
[16] 0.0864 0.0926 0.0970 0.0801 0.0805 0.0822 0.0887 0.0606 0.0743 0.0743
(0.3007) (0.2778) (0.2920) (0.3001) (0.2433) (0.1681) (0.2664)  (0.1556) (0.3197) (0.1472)
[17] 0.0811 0.0800 0.0822 0.0889 0.0720 0.1069 0.0928 0.0731 0.0549 0.1278
(0.3886) (0.2803) (0.2973) (0.3623) (0.2026) (0.2002) (0.2168)  (0.2161) (0.3585) (0.1476)
[18] 0.0824 0.0522 0.0547 0.0823 0.0917 0.0658 0.0669 0.0744 0.0933 0.0857
(0.4230) (0.2814) (0.2989) (0.3838) (0.2059) (0.2023) (0.2298)  (0.2607) (0.3309) (0.1550)
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Table 4. AE and MSEs for ML and BEs under BSEL and BLINEXL functions of y.

CS MLE BE
BSEL BLINEX
=0 ®=0.2 ®=0.8 =0 ®=0.2 ®=0.8
c=1 c=5 c=1 c=5 c=1 c=5
[1] 0.3395 0.3097 0.3264 0.3765 0.2638 0.2565 0.2879 0.2837 0.3654 0.2862
(0.1269) (0.0931) (0.0980) (0.1183) (0.0851) (0.0503) (0.08910) (0.0867) (0.1135) (0.0805)
[2] 0.3129 0.3234 0.3105 0.3373 0.2807 0.2936 0.2654 0.3066 0.3248 0.3695
(0.1307) (0.1436) (0.1361) (0.1284) (0.1112) (0.0525) (0.1109) (0.0567) (0.1228) (0.0892)
[3] 0.3154 0.2653 0.2353 0.2454 0.2108 0.3206 0.3892 0.3288 0.3321 0.3773
(0.1315) (0.1527) (0.1416) (0.1289) (0.1183) (0.0856) (0.1147) (0.0553) (0.1230) (0.0889)
[4] 0.2791 0.2362 0.3447 0.2705 0.2978 0.2625 0.3133 0.2898 0.2621 0.3090
(0.0780) (0.0810) (0.0809) (0.0821) (0.0822) (0.0789) (0.0856) (0.0747)  (0.0810) (0.0736)
[5] 0.2701 0.2933 0.2486 0.3147 0.2461 0.2809 0.2077 0.3075 0.3024 0.2681
(0.0880) (0.0892) (0.0887) (0.0850) (0.0859) (0.0592) (0.0987) (0.0619) (0.0909) (0.0777)
[6] 0.2806 0.3625 0.3061 0.3370 0.3138 0.3415 0.2616 0.3224 0.3223 0.2868
(0.0981) (0.0972) (0.0969) (0.0994) (0.0954) (0.0813) (0.0942) (0.0798) (0.1040) (0.0894)
[7] 0.2755 0.3033 0.3177 0.2610 0.2679 0.2431 0.2883 0.2715 0.2527 0.2982
(0.0910) (0.0706) (0.0734) (0.0856) (0.0660) (0.0731) (0.0682) (0.0669) (0.0829) (0.0652)
[8] 0.2806 0.2033 0.2788 0.3051 0.2629 0.3189 0.2451 0.3259 0.2958 0.2605
(0.0858) (0.1055) (0.0977) (0.0858) (0.0856) (0.0439) (0.0826) (0.0476) (0.0830) (0.0688)
[9] 0.2729 0.2314 0.2997 0.3046 0.2906 0.2431 0.2645 0.2428 0.2941 0.2580
(0.0772) (0.1081) (0.0953) (0.0767) (0.0864) (0.0389) (0.0786) (0.0410) (0.0735) (0.0587)
[10] 0.3158 0.2428 0.2658 0.3349 0.2692 0.3358 0.3030 0.2718 0.3155 0.2586
(0.2180) (0.1747) (0.1891) (0.2447) (0.1467) (0.1543) (0.1583) (0.1394) (0.2270) (0.1167)
[11] 0.2712 0.2763 0.2553 0.1922 0.1895 0.3091 0.1825 0.3290 0.1712 0.2533
(0.2674) (0.1995) (0.1952) (0.2062) (0.1397) (0.0673) (0.1453) (0.0669) (0.1902) (0.0962)
[12] 0.2385 0.3526 0.3298 0.2613 0.2593 0.2561 0.2512 0.2803 0.2383 0.3057
(0.2765) (0.2744) (0.2652) (0.2665) (0.1927) (0.0704) (0.1972) (0.0731) (0.2444) (0.1194)
[13] 0.3087 0.2949 0.2976 0.3059 0.2441 0.2708 0.2566 0.2995 0.2953 0.3281
(0.1345) (0.1231) (0.1253) (0.1321) (0.1039) (0.0854) (0.1088) (0.0817) (0.1270) (0.0936)
[14] 0.3160 0.2130 0.1936 0.2354 0.2574 0.2671 0.2485 0.2868 0.2307 0.2691
(0.1361) (0.1612) (0.1539) (0.1388) (0.1278) (0.0691) (0.1281) (0.0721) (0.1331) (0.1013)
[15] 0.2201 0.3226 0.2821 0.2606 0.2615 0.2545 0.2311 0.2635 0.2465 0.3101
(0.1355) (0.2419) (0.2131) (0.1492) (0.1898) (0.0819) (0.1737) (0.0874)  (0.1417) (0.1157)
[16] 0.2834 0.2429 0.2510 0.2753 0.2971 0.2390 0.3136 0.2681 0.2653 0.2997
(0.1115) (0.0927) (0.0960) (0.1072) (0.0819) (0.0826) (0.0858) (0.0764) (0.1034) (0.0771)
[17] 0.3052 0.2552 0.2252 0.2352 0.2005 0.3128 0.2792 0.2226 0.2221 0.2706
(0.1121) (0.1151) (0.1100) (0.1142) (0.1197) (0.0610) (0.1227) (0.0646) (0.1185) (0.0901)
[18] 0.3179 0.3144 0.3551 0.2772 0.3536 0.3144 0.3008 0.3259 0.2600 0.3176
(0.1114) (0.2692) (0.1216) (0.1269) (0.1118) (0.0786) (0.1776) (0.0813) (0.1196) (0.0998)
AE and MSEs for ML and BEs under BSEL and BLINEXL functions of 1.
CS MLE BE
BSEL BLINEX
=0 ®»=0.2 ®»=0.8 =0 »=0.2 ®=0.8
c=1 c=5 c=1 c=5 c=1 c=5
[1] 0.2459 0.1997 0.2264 0.2485 0.2125 0.2214 0.1954 0.1987 0.2058 0.2145
(0.0218) (0.0331) (0.0380) (0.0383) (0.0351) (0.0113) (0.0291) (0.0267) (0.0335) (0.0205)
[2] 0.1845 0.1984 0.2015 0.1875 0.1925 0.2006 0.2021 0.1987 0.2248 0.2145
(0.0217) (0.0126) (0.0261) (0.0184) (0.0112) (0.0225) (0.0209) (0.0267) (0.0156) (0.0292)
[3] 0.2154 0.2087 0.2065 0.2045 0.2054 0.2060 0.2192 0.1988 0.2121 0.1987
(0.0215) (0.0427) (0.0316) (0.0109) (0.0123) (0.0256) (0.0347) (0.0253) (0.0130) (0.0389)
[4] 0.2051 0.2142 0.2147 0.2305 0.2088 0.2025 0.2123 0.2017 0.2021 0.2091
(0.0280) (0.0210) (0.0209) (0.0221) (0.0222) (0.0289) (0.0256) (0.0247) (0.0210) (0.0236)
[5] 0.2065 0.2123 0.2106 0.1907 0.1961 0.2109 0.2071 0.2075 0.2024 0.2121
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(0.0280) (0.0292) (0.0283) (0.0250) (0.0259) (0.0292) (0.0387) (0.0119) (0.0309) (0.0277)
[6] 0.2150 0.2095 0.2061 0.2150 0.2138 0.1954 0.2016 0.2224 0.2223 0.2068
(0.0381) (0.0372) (0.029) (0.0394) (0.0354) (0.0213) (0.0342) (0.0198)  (0.0340)  (0.0294)
[71  0.2025 0.1953 0.2194 0.2020 0.2210 0.2054 0.2104 0.2046 0.1984 0.1935
(0.0310) (0.0206) (0.0134) (0.0256) (0.0060) (0.0131) (0.0082) (0.0069) (0.0229) (0.0052)
[8] 0.2065 0.2033 0.2210 0.2051 0.2015 0.9589 0.8551 0.9459 0.9358 0.2005
(0.0258) (0.0255) (0.0327) (0.0228) (0.0216) (0.0029) (0.0216) (0.0186)  (0.0210)  (0.0168)
[9] 0.2029 0.2114 0.2015 0.2046 0.2106 0.2094 0.2070 0.2098 0.2047 0.1980
(0.0312) (0.0241) (0.0353) (0.0267) (0.0264) (0.0289) (0.0386) (0.0110) (0.0135) (0.0187)
[10] 0.2158 0.1938 0.1908 0.2349 0.2054 0.2058 0.2030 0.2118 0.2155 0.2080
(0.0180) (0.0247) (0.0191) (0.0247) (0.0127) (0.0113) (0.0223) (0.0154)  (0.0124) (0.0127)
[11] 0.1912 0.1984 0.1932 0.1920 0.1890 0.1937 0.1828 0.2291 0.1812 0.1904
(0.0274)  (0.0295) (0.0152) (0.0262) (0.0197) (0.0173) (0.0253) (0.0169) (0.0102) (0.0262)
[12] 0.2054 0.2426 0.2298 0.2023 0.2184 0.2011 0.2042 0.2003 0.2047 0.2057
(0.0165) (0.0244) (0.0252) (0.0265) (0.0227) (0.0104) (0.0272) (0.0131) (0.0144) (0.0114)
[13] 0.1932 0.1949 0.1976 0.2059 0.1902 0.1708 0.1976 0.1995 0.1953 0.2281
(0.0145) (0.0131) (0.0253) (0.0321) (0.0039) (0.0254) (0.0188) (0.0217)  (0.0270)  (0.0136)
[14] 0.2010 0.2130 0.1936 0.2354 0.2074 0.2310 0.2240 0.2102 0.2165 0.2024
(0.0361) (0.0112) (0.0239) (0.0388) (0.0278) (0.0191) (0.0281) (0.0121) (0.0331) (0.0113)
[15] 0.1901 0.1930 0.1902 0.1972 0.1902 0.1945 0.1842 0.2045 0.2065 0.2101
(0.0255) (0.0119) (0.0131) (0.0292) (0.0298) (0.0219) (0.0237) (0.0274)  (0.0117) (0.0157)
[16] 0.2045 0.2064 0.2103 0.2079 0.2107 0.2064 0.2136 0.2081 0.2153 0.2049
(0.0115) (0.0227) (0.0260) (0.0172) (0.0219) (0.0226) (0.0258) (0.0264) (0.0134) (0.0271)
[17] 0.2052 0.1902 0.1947 0.1932 0.1894 0.2147 0.2065 0.2210 0.2011 0.2006
(0.0121) (0.0151) (0.0100) (0.0142) (0.0197) (0.0110) (0.0227) (0.0246)  (0.0185)  (0.0201)
[18] 0.2015 0.2144 0.1951 0.1872 0.1936 0.1944 0.2004 0.1959 0.2054 0.2176
(0.0114)  (0.0292)  (0.0216)  (0.0269) (0.0118) (0.0286) (0.0376) (0.0213)  (0.0196)  (0.0298)
Table 6. 95% approximate and credible CIs for a and A .
CS MLE BE
o A o A
[1] 1.4471(0.944) 0.0785(0.930) 1.4255(0.972) 0.088(0.962)
[2] 1.3459(0.940) 0.0764(0.932) 1.3058(0.972) 0.0713(0.940)
[3] 1.3239(0.932) 0.078(0.932) 1.2905(0.958) 0.0762(0.938)
[4] 1.3324(0.928) 0.06513(0.916) 1.3160(0.944) 0.0846(0.940)
[5] 1.2838(0.936) 0.0933(0.918) 1.2366(0.932) 0.0939(0.922)
[6] 1.2631(0.926) 0.0945(0.934) 1.2160(0.936) 0.0723(0.926)
[7] 1.3290(0.946) 0.0831(0.946) 1.3151(0.982) 0.0820(0.962)
[8] 1.2482(0.930) 0.0743(0.930) 1.2146(0.964) 0.0849(0.942)
[9] 1.2092(0.918) 0.0857(0.928) 1.5833(0.940) 0.0928(0.940)
[10] 1.1880(0.934) 0.0833(0.940) 1.7445(0.986) 0.0902(0.962)
[11] 1.5486(0.920) 0.0795(0.920) 1.4908(0.982) 0.0815(0.948)
[12] 1.4997(0.918) 0.092(0.930) 1.4558(0.954) 0.0910(0.950)
[13] 1.4008(0.920) 0.082(0.930) 1.3761(0.950) 0.0780(0.932)
[14] 1.3846(0.936) 0.092(0.918) 1.3442(0.936) 0.06513(0.930)
[15] 1.3761(0.934) 0.0880(0.934) 1.3217(0.932) 0.0935(0.926)
[16] 1.3946(0.956) 0.086(0.920) 1.3725(0.966) 0.0941(0.938)
[17] 1.3500(0.948) 0.0969(0.940) 1.3059(0.968) 0.0833(0.946)
[18] 1.3097(0.936) 0.0747(0.950) 1.2545(0.936) 0.0747(0.952)
Table 7. 95% approximate and credible CIs for y and 1 .
CS MLE BE
Y N Y n
[1] 0.2402(0.938) 0.2829(0.960) 0.252(0.976) 0.1888(0.948)
[2] 0.2164(0.922) 0.2367(0.95) 0.3030(0.966) 0.2213(0.948)
[3] 0.378(0.938) 0.2110(0.938) 0.2522(0.966) 0.2262(0.934)
[4] 0.2513(0.938) 0.2311(0.952) 0.2656(0.946) 0.1846(0.948)
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[5] 0.3033(0.932) 0.1855(0.934) 0.3049(0.940) 0.2039(0.938)
[6] 0.2745(0.938) 0.2674(0.944) 0.3134(0.926) 0.2223(0.912)
[7] 0.2331(0.932) 0.1752(0.960) 0.2844(0.966) 0.2420(0.962)
8] 0.2943(0.934) 0.1644(0.958) 0.2896(0.958) 0.2149(0.942)
[9] 0.2457(0.926) 0.2396(0.956) 0.3311(0.950) 0.2228(0.942)
[10]  0.2533(0.930) 0.1561(0.964) 0.2859(0.958) 0.2002(0.968)
[11]  0.2595(0.918) 0.1969(0.940) 0.3676(0.964) 0.2415(0.940)
[12] 0.252(0.916) 0.2347(0.950) 0.3263(0.946) 0.1960(0.944)
[13]  0.2406(0.938) 0.2734(0.952) 0.3355(0.954) 0.2471(0.950)
[14]  0.2900(0.926) 0.2626(0.950) 0.3270(0.958) 0.207(0.928)
[15]  0.2009(0.940) 0.2563(0.948) 0.327(0.930) 0.1673(0.962)
[16]  0.2602(0.952) 0.2307(0.958) 0.2853(0.954) 0.1860(0.962)
[17]  0.2679(0.920) 0.2218(0.946) 0.3277(0.934) 0.1979(0.926)
[18]  0.2300(0.924) 0.1986(0.948) 0.2548(0.924) 0.1709(0.972)

Table 8. BEs under BSEL and BLINEX for a simulated data.

parameter 0] BSEL BLINEX
c=1 c=5
o 0.2 1.4317 1.3477
0.8 1.4522 1.5311 1.4859
A 0.2 1.5379 0.0831 0.0859
0.8 0.0694 0.0854 0.0933
y 0.2 0.0738 0.2699 0.2740
0.8 0.3683 0.2629 0.3110
n 0.2 0.3767 0.1927 0.2057
0.8 0.2186 0.1978 0.2024
Appendix
From the log-likelihood function in (13), we have
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