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1. INTRODUCTION 

The developments of technologies and global competition have emphasized the need for more accurate estimation 

of reliability of a product, system or component in a shorter time. In standard life data analysis, failure data is examined 

to determine the product, component, or system's life characteristics. Collecting lifetimes on extremely dependable 

items with very long lifetimes is often exceedingly difficult, but not impossible, because very few, if any, failures can 

occur during a restricted testing time under normal conditions. Given this difficulty, reliability practitioners have 

attempted to introduce methods to make failures quickly by subjecting the products to severer environmental conditions 

without introducing additional failure modes other than those observed under normal operating conditions. ALT is one 

of the most modern approaches that used to observe enough failure data, in a short period. In such testing, products are 

tested at higher than normal levels of stress (e.g., temperature, voltage, humidity, vibration or pressure) to induce 

quickly failures. 

PALT is one type of the ALT schemes. The stress loading in PALTs can be applied in different types, commonly 

used types are constant-stress, step-stress and progressive-stress. 

In step-stress PALT, the stress on every unit is increasing step by step at prespecified times or simultaneous the 

occurrence of a constant number of failures, for a brief review on step-stress model, see Miller and Nelson [1], Bai et 

al. [2], Soliman et al. [3] and Balakrishnan et al. [4]. 

In progressive-stress model, the stress on each test unit is continuously increasing in time. If an ALT contains 

linearly increasing stress, for more details see Yin and Sheng [5], Abdel-Hamid and AL-Hussaini [6].  

In a constant stress PALT experiment, the total test units are first divided into two groups, the items of one of the 

groups are allocated to a normal condition, and the items of the other group are allocated to a stress condition, each unit 

is run at a constant level of stress until the unit fails. The constant stress PALTs have advantages in certain aspects 

including conducting experiments, modeling distributions, and estimating parameters, the statistical models of most 

types of distributions based on constant stress PALTs are more effectively developed compared with those of step-

stress PALTs. The calculation of parameter estimation of distributions in constant stress PALTs is generally easy to 

perform as well, for a brief review on constant stress PALTs, Nelson [7] pointed out that the constant-stress testing has 

several advantages. Bai and Chung [8] provided the ML method to estimate the scale parameter and acceleration factor 
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for the exponential distribution under two types of PALT which are step and constant stresses in case of type-I 

censoring Abdel-Hamid [9] studied the constant stress PALTs for Burr type-XII distribution with progressive type-II 

censoring. Estimating the Burr XII parameters in constant stress PALTs under multiple censored data was considered 

by Cheng and Wang [10]. Zarrin et al. [11] analyzed the maximum likelihood method for estimating the acceleration 

factor and the parameters of Rayleigh distribution for constant stress PALT. Estimating the generalized exponential 

distribution parameters and the acceleration factor under constant stress PALTs with type-II censoring reported by 

Ismail [12]. Kamal et al. [13] used maximum likelihood approach for estimating the acceleration factor and parameters 

for inverted Weibull distribution based on type-I censored data. The constant stress PALT under progressive censoring 

for the generalized exponential distribution was introduced by Jaheen et al. [14]. Abushal and soliman [15] applied the 

maximum likelihood and Bayesian approaches to estimate the parameters of the Pareto distribution under progressive 

censoring data for constant stress PALTs. Estimation and optimum constant stress PALTs for Gompertz distribution 

with type-I censoring discussed by Li and Zheng [16]. Ahmed et al. [17] discussed how to obtain maximum likelihood 

and Bayesian estimation of parameters in exponentiated Weibull distribution under partially acceleration life tests. For 

units with a Gompertz distribution and units that fail under two independent causes of failure, Alghamdi [18] used a 

Type-I generalized hybrid censoring technique. Alam et al. [19] proposed constant stress PALTs and estimated costs of 

maintenance service policy for the generalized inverted exponential distribution. Mahmoud MAW et al. [20] discussed 

Estimating the modified Weibull parameters in presence of constant stress PALTs. Inference on Nadarajah-Haghighi 

distribution with constant stress PALT under progressive type-II censoring was reported by Dey S. et al. [21]. 

Ahmadini A, et al. [22] proposed estimation of constant stress PALT for Fréchet distribution with type-I censoring. 

Analysis of the modified Kies exponential distribution with constant stress PALTs under Type-II censoring was 

covered by Nassar M. and Alam FMA [23]. 

In reliability experiments, the another way to save time and reduce cost is censored data, see Balakrishnan and 

Kundu [24]. There are several conventional censoring schemes, such as, type-I censoring scheme, type-II censoring 

scheme, hybrid censoring scheme and progressive censoring scheme. The inability to remove units at locations other 

than the experiment's terminal point is one of the disadvantages of the traditional type-I, type-II, or hybrid censoring 

schemes. Because of that, a more general censoring scheme called progressive censoring has been introduced. The 

progressive censoring scheme (Balakrishnan & Aggarwala, [25]) has the flexibility of allowing removal of units at 

points other than the terminal point of the experiment. Another advantage of progressive censoring is that the 

degeneration information of the test units is obtained from those removed units. Although the scheme is more flexible 

in terms of the removal of units, it still has disadvantages. The drawback of the type- II progressive censoring, similar 

to the conventional type- II censoring, is that it can take a lot of time to get to the 
thm  failure time and the running time 

T  of the experiment is still unknown. In order to assure the number of failures, Ng et al. [26] proposed another 

censoring scheme called the adaptive type-II progressively hybrid censoring scheme. 

This type of censoring scheme can be described as follows: the observed sample size is always m  and the iR  may 

change accordingly during the experiment. If  nmmXT ::  , we will get m  observed failures before stopping the 

experiment and all iR  remain unchanged. If nmjnmj XTX ::1:: +  for mj 0 , where 0::0 =nmX , we 

will continue to run the experiment until the 
thm  failure occurs and we adjust iR  to ,iR  where 0=

iR  for 

1,...,2,1 −++= mjji  and k

j

k
m RmnR

1=

 −−= . Thus, this setting can be viewed as a design, in which one 

would ideally like to have m  observed failure times for efficiency of inference, and at the same time have the total 

time on test to be not too far away from the ideal test duration T . The value of T  plays an important role in the 

determination of the values of It is used to compromise between a shorter experimental time and a higher chance to 

observe extreme failures. We will have a usual progressive type-II censoring scheme with pre-fixed iR  ' s  when 

→T . And, we will have a conventional type-II censoring scheme with 0... 11 === −mRR  and mnRm −=  

when 0→T . 

In addition to this introductory section this article includes some more sections too. In section 2 a description of the 

lifetime model and assumption are presented. The MLEs of model parameters of our model and the acceleration factor 

are derived for constant stress PALT using adaptive progressive type-II censored data in section 3. In section 4 the BEs 

of model parameters using Markov chain Monte Carlo simulation method are obtained. In Section 5 intervals 

estimation of the model parameter and acceleration factor are described such as asymptotic, bootstrap and credible 

confidence intervals. Numerical studies to illustrate the theoretical results are given in section 6. The conclusion is 

made of the study in section 7. 
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2. Description of the model 

2.1. The WIE distribution: As a lifetime model 

Chandrakant et al. [27] introduced a three-parameter WIE distribution, which is considered an extension of the inverted 

exponential distribution. The WIE distribution is flexible in nature and can take several shapes, such as J-reversed, 

symmetric, and positively skewed as well. Additionally, the shape of the WIE distribution is either be decreasing or 

unimodal. The shape of the hazard function can be decreasing, increasing and an inverted bathtub (depending upon the 

values of the parameters). According to the previous features, the WIE distribution can be used to fit different data in 

several vital fields, such as engineering, industry, biomedical studies, and medicine, to contribute to solving many 

obstacles. In our study, the failure times are assumed to be from the WIE ( , , ) distribution. For some statistical 

properties as well as the properties of order statistics of the WIE distribution. 

For conducting a constant stress PALT experiment, the total test items are divided into two groups. The items of one 

group are allocated to the normal condition and the items of the other group are allocated to the stress condition. The 

lifetime of the test unit under the normal and stress conditions is assumed to follow the WIE distribution. The 

probability density function (PDF) of the WIE distribution and the cumulative distribution function (CDF) of the 

lifetime of a unit for the normal condition  
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the survival and hazard rate functions of the WIE (  ,, ) distribution are 
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The hazard rate of an item tested at accelerated condition is given by ( ) ( )thth TT 12
=  , where is an acceleration factor 

satisfying 1 . Therefore the hazard rate function, survival function, CDF and PDF under accelerated condition are 

given, respectively, by 
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where 1T  and 2T  represent lifetimes of units under the normal condition and the stress condition, respectively, ,  is 

the shape parameter,   is the scale parameter,   is the acceleration factor, and 0 , 0 , 0 , 1 . 
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2.2. Constant-stress PALT 

According to constant stress PALTs under adaptive progressive type-II censoring, group 1  consists of 
1n  items 

randomly chosen among n  test items is subjected to use condition and group 2 consists of 
12 nnn −=  remaining 

items are subjected to an accelerated condition. The observed sample size is always jm  and the jiR , jmi ,...,1= ,  

2,1=j  may change accordingly during the experiment. If 
jjj nmmXT :: , we will get  jm  observed failures 

before stopping the experiment and all ijR  remain unchanged. If 
jjjjjj nmkjnmjk XTX :):1(:: +  for 

jj mk 0 , where 0::0 =
jj nmjX , we will continue to run the experiment until the 

th

jm  failure occurs and we 

adjust jiR  to ,

jiR  where  0=

jiR  for 1,...,2,1 −++= jjj mkki  and 
l

k

l
jjmj RmnR

j

1=

 −−= . The joint PDF for 

jjmR

jjj

jR

jj

jR

jj nmjmnmjnmj XXX ,:,:2,:1 ...21   is given by 
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for  ( ) ( ) ....... ::::2:1::::2::1 − ++ jjjjjjjjjjjjjjjj nmjmnmkjnmkjnmjknmjnmj xxxTxxx  

 

3. Maximum likelihood estimation 

In this section, the MLEs of the model parameters are constructed. Let 
jjjj jmnmjm xx =:: be the observed values of 

the lifetime obtained from adaptive progressive type-II censoring under constant stress PALT. 

The likelihood function for group 1 is given by 
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The likelihood function for group 2 is given by 
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where ),,(
22232221 ,...,2 m

xxxxX = , i

k

i
m RmnA 2

1
22

2

2
=

−−= , 

based on  Eqs. (10) and (11) The likelihood function for group 1 and group 2 can be written in one equation as follow:  
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where ),,(
2321 ,..., jmjjj

xxxxX = , 
ji
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jjm RmnA

j
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−−= . 

It is easier to maximize the natural logarithm of the likelihood function  ( )xL |,,,log   than the likelihood 

function. Therefore, the log-likelihood function is given by 
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The first order partial derivatives of log-likelihood function with respect to ,   ,  , and   are given by: 
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We can show from the likelihood equations that, for given  , and  , the MLE of  , from Eq. (17), is 
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By replacing   by ( ) ,,ˆ  in (14), (15) and (16), we obtain the profile likelihood equations for ,  and  . 

Once  ˆ,ˆ  and ̂  are obtained as the solution of the system of equations 0===
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4. Bayes estimation 

This section deals with obtaining the Bayesian estimation for the unknown parameters when the data are obtained from 

WIE model under different loss functions based on constant stress PALT under adaptive progressive type-II censored 

data. 

4.1. Prior and posterior distribution 

In practical works the parameters cannot be treated as a constant during the life testing time. Therefore, considering the 

lifetime model's parameters to be random variables would be accurate. The type of prior information we have access to 

frequently determines the prior distribution that is chosen. When we don't know much or anything about the parameter, 

It is best to employ a non-informative prior (NIP). In many practical situations, the information about the parameters 

are available in an independent manner. In this section, we take an informative prior distribution for the parameter   

as the gamma with the scale parameter a  and shape parameter b , and the parameters  ,   and   have NIP, thus 

.0,0,0,)( 1

1  −− bae ba  
 

.0,
1

)(2  


  

.0,
1

)(3  


  

.1,
1

)(4  


  

In case of NIP, we take 0→a  and 0→b . 

Therefore, the joint prior of the parameters  ,,  and   can be expressed by 

1 1 1 1( , , , ) , 0, 0, 0, 1.a bg e            − − − − −    
                       

(20) 

The joint posterior density function of the parameters  ,,,  can be expressed by using ( )xL |,,,   and 

( , , , )g      from Eqs. (12) and (20), we get after simplification, the posterior distribution as 
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We noted that the Bayes estimators' form is implicit and cannot be analytically resolved. By establishing a Markov 

chain Monte Carlo (MCMC) with a limiting distribution that is equal to the target. In such a situation, BEs and highest 

posterior density (HPD) credible intervals of the parameters will be computed using the MCMC methods using Gibbs 

sampler and Metropolis-Hastings (see Hastings [28]) algorithm. 

Thus for implementing the Gibbs algorithm, the full conditional posterior densities of  ,,  and   are given by 

( )2 1
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Therefore, samples of  and   generated by using a gamma distribution. However, the posterior distribution of   

and   cannot be reduced analytically to a well-known distribution, and therefore it is not possible to sample directly by 

standard methods. Therefore, we use the Metropolis-Hasting algorithm with the normal proposal distribution to 

generate a random sample from the posterior densities of ,   ,  and    . We use the following algorithm to 

compute the BE of  ,,  and    

 

.Algorithm (1) 

Step 1: Start with an ( ).,,, )0()0()0()0(    

Step 2: Set 1=j . 

Step 3: Generate 
)( j  from Gamma ( ( ))1()1()1(
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by Eq. (23). 
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Step 5: Using the proposal distribution and the Metropolis-Hasting algorithm, generate 
)( j  from 

( ) ( ) ( ) ),,,|( 1)(1 xjjjj −−   , as follows: 

• Generate 
( )  from the proposal distribution ).(q   

• Calculate the acceptance probability 
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• Generate from u  from Uniform ( )1,0 . 
( )),(  u  accept the proposal and set  

( ) ( )j =
. Otherwise, 

reject the proposal and set 
( ) ( ).1− = j   

Step 6: Repeate the previous step, using Metropolis-Hasting algorithm, generate 
)( j   from 

( ) ( ) ( ) ),,,|( )(1 xjjjj 
−

 with the 
( ) )),(,( 1 


esN j−

 proposal distribution. 

Step 7: Set .1+= jj   

Step 8: Repeat Steps 2 through 6 , N  times, and obtain the posterior samples 
( )j , 

( )j , 
( )j , and 

)( j , 

Nj ,...,3,2,1=  . 

The initial iteration value in this study is MLEs rather than arbitrary estimation. These samples are used to compute the 

BEs, and to construct the HPD credible intervals for  ,,  and  . 
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4.2. Bayes estimation based on balanced loss function 

In Bayesian approach, to select a single value that represents the best estimate of an unknown parameter, one must 

specify a loss function. This paper proposes the use of balanced loss function, which creates a balance between 

classical and Bayesian approaches, and provides an estimate that is a linear combination of ML and BEs. Ahmadi et al. 

[27] suggested the use of so-called balanced loss function, to be in the form  

( ) ( ) ( ) ( ) ( ) ( ).,1,, 0,, 0
 qqL −+=

                                      
(27) 

where  )1,0 , ( )q  is a suitable positive weight function and ( ) ,  is an arbitrary loss function when 

estimating   by  . The parameter 0  is a chosen prior estimator of  , obtained for example from the criterion of 

ML, least squares or moment among others. A general development with regard to BEs under ( ) ,
0,,L  is given, 

namely by relating such estimators to Bayes solutions to the unbalanced case, i.e., ( ) ,
0,,L  ; with 0= . 

( ) ,
0,,L  can be specialized to various choices of loss function, such as for squares error (SE) and  linear 

exponential (LINEX) loss functions. 

By choosing ( ) , = (  − )
2

 and ( ) 1=q , the balanced loss function (27) reduced to the balanced SE loss 

(BSEL) function, in the form 

( ) ( ) ( ) ,)(1, 22

0, 0
  −−+−=

                                               
(28) 

and the corresponding BE of the function   is given by 

( ) ( ).|1ˆ
0 xEBS  −+=

                                                           
(29) 

By choosing ( ) 1=q and ( ) ( ) ( ) 1, −−−= −   cec
 in Eq. (27) reduced to the balanced LINEX loss 

(BLINEXL) function in the form: 

( ) ( )0
1ˆ log 1 | ,

c c

BL e E e x
c

   − − = − + −
 

                                                

(30) 

where 0c  is the shape parameter of BLINEXL function. 

Using Eqs. (27) - (30) the approximate BEs under the BSEL and BLINEXL functions for  =  ( ),,,    are 

given, respectively by: 

( ) ,1ˆˆ

)(

1

N

i
N

Mi
MLS






+=−+=
                                                             

(31) 

and 

( ) .1 log
1ˆ

)(

1ˆ



















−+−=

−

+=−


N

e

e
c

i

ML

a
N

Mia

L



 

                                                 

(32) 

5. Interval estimation 

In this section, the approximate, Bootstrap and credible intervals of the parameters  ,,  and   are derived. 

5.1. Asymptotic confidence interval 

In this subsection, the approximate confidence intervals of the parameters are obtained based on the asymptotic 

distributions of the MLEs of the elements of the vector of unknown parameters. It is known that the asymptotic 

distribution of the MLEs of  ,,  and   is given, the exact solution for the confidence intervals is not possible 

since the distributions of MLEs are not explicitly defined here. However, one can obtain the asymptotic confidence 

intervals using large sample property of the MLE. 

Under this property, the asymptotic sampling distribution of 
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−
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ˆ
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 is ),0( 1

3

−N , where,   is the observed 

Fisher information matrix and which is defined as follows: 
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(33) 

whose elements are given in Appendix.  

The diagonal elements of 
1−  provides the asymptotic variances for the parameters  ,,  and   respectively. 

Then two-sided 100(1- )% normal approximation confidence interval of  ,,  and   can be obtained as 

z/2se , z/2se , z/2se and ☺z/2se☺ ,     34

         (34) 

 

Where (.)se  is the square root of the diagonal element of 
1−  corresponding to each parameter, and 2/z  is the 

quantile )%2/1(100 −  of the standard normal distribution. 

5.2. Bootstrap confidence intervals 

In this section, confidence intervals based on the parametric bootstrap method for the unknown parameters  ,,  

and  using percentile interval are derived, for more details see Efron and Tibshirani [29]. The following algorithm is 

construct to obtain a bootstrap sample. 

1. From the original two sample },...,,{ 21 nxxx  compute MLEs ,ˆ,ˆ,ˆ  and  ̂  . 

2. Using ,ˆ,ˆ,ˆ   and ̂  to generate a bootstrap sample },...,,{ 21



nxxx  and compute the bootstrap estimate of 

  ˆ,ˆ,ˆ and .ˆ    

3. Repeat steps (1)-(2), B  times and arrange each estimate in ascending order to obtain the bootstrap samples 

{


B ˆ...,,ˆ,ˆ
21 }, {



B ˆ,...,ˆ,ˆ
21 }, {



B ˆ...,,ˆ,ˆ
21 } and {



B ˆ...,,ˆ,ˆ
21 }. 

The approximate )%1(100
2
−  confidence interval for i  is given by 

( ) ( ) ,4,3,2,1),ˆ,ˆ(
22

1
=

−

 i
NiNi


  

where .ˆˆ,ˆˆ,ˆˆ,ˆˆ
4321

 ====    

5.3. Credible confidence intervals 

A )%1(100 −  Bayesian credible or posterior interval for a random quantity   is the interval that has the posterior 

probability )1( −  that   lies in the interval. 

The following algorithm is performed to obtain credible confidence intervals of  ,,   and .   

  Algorithm (2) 

1. Repeat steps (1) to (6) in algorithm (1)  

2. Then using the algorithm proposed by Chen and Shao [30], the Bayesian credible interval for the parameter is 

obtained by using the generated MCMC samples. By arranging the posterior sample 
( )j , Nj ,...,3,2,1=  

as 
)(

...)2()1( N  , the  )%1(100 −  HPD credible intervals for ),,,(  =  is given by 

( )  ( )), ,( )1(  −+ NJJ                                                                            
(35) 

where J  is chosen such that 

 ( ) ( )  ( ) ( )( ) .,...,2,1;min )1(
1

)1( NjiNi
Ni

JNJ =−=− −+


−+  



 

 

6. Numerical exploration 

To show how the suggested method may be used, we perform out a simulation study and examine an example in this 

section. 
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6.1. Simulation study 

To investigate how the ML and BEs respond in terms of their mean square errors (MSEs) and coverage probabilities 

depending on various sample size choices a simulation study is carried out, let 40,30,25,201 =n  and 

50,40,25,202 =n ; different effective sample sizes, 20,18,15,101 =m  and 25,20,18,102 =m ; and 18 

different censoring schemes; details of the schemes are given in Table 1. Different progressive censoring schemes(CSs) 

are considered with notation that (
30,5 ) means ( 0,0,0,5 ). 

In all cases we have used   ,2.0,3.0,08.0 === 5.1= , and 85.0=T . For a given jn , jm , T , 

 ,,,  and schemes 2,1,,...,2,1, == jmiR jji  , using the algorithm proposed by Ng et al. [26] . we have 

generated a sample for a given CS. 

1. For 2,1=j  , generate  jm   independent and identically distributed random numbers ( 
jjmjj UUU ...,,, 21  ) 

from uniform distribution  ]1,0[U  . 

2. Determine the values of the censored scheme jiR , jmi ,...,2,1= , such that  .2,1,
1

=−=
=

jmnR jjji

m

i

j

  

3. Set 
















+ 
+−=

=

jh

jm

ijmh

Ri

jiji UE
1

/1

,  .2,1,,...,2,1 == jmi j   

4. Generate the progressive type-II censored sample ( 


jjmjj UUU ...,,, 21  ), where  jh

m

imh

ji EU
j

j


+−=

 −=
1

1  ,  

.2,1,,...,2,1 == jmi j   

5. The order observations 
jjjjjjj nmjmnmjnmj xxx ::::2::1 ,...,,  , are calculated as follows 

xji /loglog1Uji

/̂1/1, i 1,2, . . . ,mj, j 1,2

 

6. Determine the value of jk , where 
( ) jnjmjkjnjmjk jj XTX

::1:: +
 , and discard the sample 

( ) jnjmjkjX
::2+

 ,...,  

jnjmjmj
X

::
. 

7. Generate the first 1−− jj km order statistics from a truncated distribution  )](1/[)( 1+−
jkj xFxf  , with sample 

size ( 1
1

−−−
=

jji

k

i

j kRn
j

 ) as  
( ) jnjmjmjnjmjk jj XX

::::2
,...,

+
. 

We calculate the acceleration factor and the MLEs of the unknown parameters ,  and    and the acceleration 

factor  using the generated data. The Newton-Raphson method is applied for solving the nonlinear system to obtain 

the MLEs of the parameters and compute the approximate intervals. We also compute the BEs of the unknown 

parameters based on the MCMC sampling procedure. For BE, we are used informative prior for the parameter  , we 

have used the hyper parameters value as 1.0=a  and 1=b . Based on  1000  replications, we calculate the average 

estimates (AE) and the average MSE of the estimations. Results are reported in tables (2-5). In all cases BSEL and 

BLINEXL functions, with 8.0,2.0= , have been used for computing the BEs. 

The following points are quite clear from the tables (2-5). As sample size ( 2,1, =jn j ) increases, the MSEs of 

estimates of all the unknown parameters decrease. For fixed 2,1, =jn j , the MSEs of estimators of model parameters 

decrease as 2,1, =jm j  increases. From tables 6 and 7 we discover that the Bayesian credible intervals and 

approximate confidence intervals' coverage probability are relatively near to the nominal level. Also, in most cases, the 

Bayesian credible intervals are marginally shorter length than that of the approximate confidence intervals. Hence, we 

recommend to use Bayesian credible intervals over approximate confidence intervals. When 8.0=  all results of 

BEs under both BSEL and BLINEXL functions for the parameters are quite similar to corresponding MLEs. 
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6.2. Numerical example 

The simulated data observed based on 351 =n , 452 =n , 251 =m , 352 =m ,  35.0,25.0,1.0 ===  , 

5.1= , )0,1,0( 10510

1 =R  and )0,1,0( 15515

2 =R . The  LEs of model parameters obtained by using N 

Maximize option of  Mathematica 10 are  

.5057.1ˆ    ,3085.0ˆ ,2423.0ˆ    ,0912.0ˆ ==== 

The %95  asymptotic confidence intervals for the parameters are: 

,9983.11156.1    and3874.02710.0   ,2792.01604.0   ,1113.00641.0  

The bootstrap estimate of model parameters are obtained as  

.5447.1ˆ    ,3421.0ˆ ,1984.0ˆ    ,0841.0ˆ ==== 

%95  bootstrap confidence intervals for the parameters  , ,   and the acceleration factor   are 

,0097.21234.1    and3751.02548.0   ,2867.01784.0   ,1089.00754.0  

we compute the BEs of  , ,   and the acceleration factor  . Since we do not have any prior information, we 

assume 0==ba . Figure 1 shows the trace plots of 10000 MCMC samples for posterior distribution of  , ,   

and  . It show that the MCMC procedure converges very well. Therefore. 

Hence, under BSEL function ( 0= ), we compute the approximate Bayes estimates of   , ,   and   using 

MCMC method and they are  

,4236.1ˆ ,3512.0ˆ ,2378.0ˆ    ,0794.0ˆ ==== BS

and the associated %95  symmetric credible intervals are given by 

,,8940.10210.1    and6421.01845.0   ,3810.02214.0   ,1851.00550.0  

Under BLINEXL function ( 0= ), with 11 =c and 52 =c , we compute the approximate BEs of   ,  ,     and  

  , and they are  

,4006.1ˆ ,3608.0ˆ ,2401.0ˆ    ,0921.0ˆ ==== BL

,3169.1ˆ ,3508.0ˆ ,2604.0ˆ    ,1105.0ˆ ==== BL

We also compute the approximate BEs of  , ,   and   under both BSEL and BLINEXL function with 

8,0,2.0=  and they are in Table 8. 

7. Concluding remarks 

In this paper, we have considered the constant stress PALT when the observed data come from WIE distribution under 

adaptive progressive type-II censoring. We derived ML and Bayes estimators of the parameters and the acceleration 

parameter using NIP and gamma informative priors under both BSEL and BLINEXL functions. These estimates cannot 

be obtained in closed form, but can be computed numerically. Asymptotic confidence intervals based on observed 

Fisher information and HPD credible intervals of the parameter are developed. We made use of MH algorithm for BE. 

A simulation study was carried out to compare and contrast how well the suggested approaches performed for various 

sample sizes and CSs. Based on the simulation study, we find that in terms of MSEs, the Bayes estimates perform 

better than MLEs. Also, In terms of average length and coverage probability, the HPD credible intervals based on the 

Metropolis-Hastings algorithm perform better than asymptotic confidence intervals. Furthermore, As sample size 

increases, the length of the confidence interval likewise shortens, and for all sets of parameters taken into consideration, 

the coverage probability is about equal to the nominal value. 
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Figure 1. MCMC iterations and the posterior samples’ kernel histograms for each parameter. 

 

Table 1. Several CSs for the simulation study. 
 

CS n1 n2 m1 m2 R1 R2 CS n1 n2 m1 m2 R1 R2 

[1] 30 40 15 20 (15,0¹⁴) (20,0¹⁹) [10] 20 20 10 10 (10,0⁹) (10,0⁹) 

[2]     (1¹⁵) (1²⁰) [11]     (1¹⁰) (1¹⁰) 

[3]     (0¹⁴,15) (0¹⁹,20) [12]     (0⁹,10) (0⁹,10) 

[4] 30 40 20 25 (10,0¹⁹) (15,0²⁴) [13] 20 20 18 18 (12,0¹⁷) (12,0¹⁷) 

[5]     (5,0¹⁸,5) (10,0²³,5) [14]     (6,0¹⁶,6) (6,0¹⁶,6) 

[6]     (0¹⁹,10) (0²⁴,15) [15]     (0¹⁷,12) (0¹⁷,12) 

[7] 40 50 20 25 (20,0¹⁹) (25,0²⁴) [16] 25 25 18 18 (7,0¹⁷) (7,0¹⁷) 

[8]     (10,0¹⁸,10) (13,0²³,12) [17]     (4,0¹⁶,3) (4,0¹⁶,3) 

[9]     (0¹⁹,20) (0²⁴,25) [18]     (0¹⁷,7) (0¹⁷,7) 

 
Table 2. AE and MSEs for ML and BEs under BSEL and BLINEXL functions of α. 

 

CS MLE BE 

BSEL BLINEX 

ω=0 ω=0.2 ω=0.8 ω=0 ω=0.2 ω=0.8 

   c=1 c=5 c=1 c=5 c=1 c=5 

[1] 1.3970 1.4527 1.4415 1.4081 1.3251 1.3311 1.3193 1.4417 1.4024 1.3805 

 (0.0494) (0.0282) (0.0394) (0.0436) (0.0440) (0.0401) (0.0460) (0.0414) (0.0530) (0.0499) 

[2] 1.4115 1.3421 1.3560 1.3976 1.322 1.2521 1.3389 1.2735 1.3925 1.3633 

 (0.0501) (0.0309) (0.0359) (0.0440) (0.0297) (0.0415) (0.0313) (0.0380) (0.0433) (0.0382) 

[3] 1.4883 1.4315 1.4428 1.4769 1.4106 1.2387 1.4253 1.2593 1.4718 1.4441 

 (0.0557) (0.0487) (0.0333) (0.0444) (0.0329) (0.0468) (0.0343) (0.0430) (0.044) (0.0405) 

[4] 1.5122 1.5396 1.5341 1.5177 1.5181 1.4424 1.5168 1.4540 1.5133 1.4953 

 (0.0414) (0.0405) (0.0413) (0.0415) (0.0331) (0.0322) (0.0347) (0.0301) (0.0306) (0.0307) 

[5] 1.5052 1.4049 1.4250 1.4851 1.2874 1.2252 1.4096 1.2496 1.4802 1.4517 

 (0.0427) (0.0374) (0.0365) (0.0396) (0.0398) (0.0335) (0.0377) (0.0771) (0.0371) (0.0365) 

[6] 1.5162 1.2918 1.4167 1.4913 1.2752 1.2165 1.4016 1.2426 1.4861 1.4545 

 (0.0428) (0.0386) (0.0365) (0.0390) (0.0392) (0.0354) (0.0379) (0.0379) (0.0384) (0.0399) 

[7] 1.5071 1.5543 1.5449 1.5166 1.5329 1.4572 1.5276 1.4655 1.5122 1.4952 

 (0.0510) (0.0473) (0.0476) (0.0497) (0.0435) (0.0377) (0.0447) (0.0392) (0.0492) (0.0467) 

[8] 1.4993 1.4425 1.4539 1.4880 1.4260 1.2672 1.4400 1.3865 1.4840 1.4627 

 (0.0382) (0.0261) (0.0276) (0.0348) (0.0274) (0.0366) (0.0281) (0.0336) (0.0344) (0.0320) 

[9] 1.4992 1.4278 1.4421 1.4850 1.4127 1.3586 1.4291 1.3786 1.4810 1.4593 

 (0.0346) (0.0231) (0.0240) (0.0308) (0.0248) (0.0349) (0.0249) (0.0314) (0.0305) (0.0284) 

[10] 1.5242 1.5891 1.5762 1.5372 1.5472 1.4149 1.5423 1.4299 1.5285 1.4920 
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 (0.1024) (0.0848) (0.0872) (0.0978) (0.0724) (0.0589) (0.0777) (0.0617) (0.0957) (0.0830) 

[11] 1.5115 1.4637 1.4733 1.5019 1.4322 1.3303 1.4468 1.3525 1.4942 1.4508 

 (0.0846) (0.0428) (0.0494) (0.0744) (0.0430) (0.0582) (0.0482) (0.0550) (0.0727) (0.0599) 

[12] 1.4896 1.4414 1.4510 1.4800 1.4121 1.3163 1.4264 1.3377 1.4728 1.4324 

 (0.0821) (0.0439) (0.0498) (0.0727) (0.0453) (0.0625) (0.0497) (0.0590) (0.0715) (0.0614) 

[13] 1.5200 1.5269 1.5255 1.5214 1.5021 1.4163 1.5056 1.4325 1.5163 1.4933 

 (0.0637) (0.0558) (0.0573) (0.0620) (0.0520) (0.0490) (0.05416) (0.0490) (0.0611) (0.0563) 

[14] 1.5147 1.4746 1.4827 1.5067 1.4515 1.3718 1.4637 1.3925 1.5017 1.4750 

 (0.0577) (0.0462) (0.0481) (0.0549) (0.0453) (0.0512) (0.0468) (0.0484) (0.0542) (0.0494) 

[15] 1.5180 1.4387 1.4546 1.5021 1.4168 1.3409 1.4361 1.3653 1.4968 1.4661 

 (0.0553) (0.0483) (0.0485) (0.0527) (0.0490) (0.0596) (0.0483) (0.0541) (0.0519) (0.0474) 

[16] 1.5276 1.5494 1.5450 1.5320 1.5247 1.4393 1.5252 1.4534 1.5270 1.5054 

 (0.0456) (0.0350) (0.0337) (0.0379) (0.0349) (0.0324) (0.0401) (0.0403) (0.0430) (0.0423) 

[17] 1.5044 1.4410 1.4537 1.4917 1.4200 1.3469 1.4360 1.3685 1.4866 1.4581 

 (0.0497) (0.0473) (0.0367) (0.0455) (0.0363) (0.0379) (0.0370) (0.0379) (0.0449) (0.0411) 

[18] 1.4866 1.3694 1.3929 1.4632 1.3510 1.2865 1.5095 1.3127 1.4577 1.4246 

 (0.0595) (0.0524) (0.0443) (0.0463) (0.0509) (0.04942) (0.0465) (0.0403) (0.0469) (0.0408) 

Table 3.  AE and MSEs for ML and BEs under BSEL and BLINEXL functions of λ. 

 

CS MLE BE 

BSEL BLINEX 

ω=0 ω=0.2 ω=0.8 ω=0 ω=0.2 ω=0.8 

   c=1 c=5 c=1 c=5 c=1 c=5 

[1] 0.0622 0.0764 0.0736 0.0850 0.0854 0.0823 0.0891 0.0688 0.0861 0.0742 

 (0.3656) (0.2477) (0.2575) (0.3782) (0.1785) (0.1595) (0.1946) (0.1495) (0.3338) (0.1494) 

[2] 0.0860 0.0809 0.0828 0.0884 0.0754 0.0897 0.0841 0.0813 0.0848 0.0832 

 (0.3792) (0.2475) (0.2689) (0.3479) (0.2402) (0.2305) (0.2599) (0.2070) (0.3049) (0.1405) 

[3] 0.0867 0.0856 0.0858 0.0865 0.0740 0.0610 0.0745 0.0614 0.0860 0.0734 

 0.5256 (0.3523) (0.3809) (0.4849) (0.2186) (0.2333) (0.2429) (0.2098) (0.4064) (0.1453) 

[4] 0.0861 0.0869 0.0734 0.0628 0.0607 0.0826 0.0570 0.0730 0.0607 0.0745 

 (0.2314) (0.1684) (0.1873) (0.2158) (0.1577) (0.1463) (0.1668) (0.1380) (0.1944) (0.1521) 

[5] 0.0865 0.0743 0.0747 0.0861 0.0632 0.0809 0.0738 0.0613 0.0878 0.0743 

 (0.3683) (0.2301) (0.2465) (0.3294) (0.1878) (0.1563) (0.1927) (0.2096) (0.2881) (0.2090) 

[6] 0.0850 0.0738 0.0741 0.0951 0.0729 0.0762 0.0733 0.0711 0.0749 0.0731 

 (0.3299) (0.2260) (0.2744) (0.3122) (0.2206) (0.2153) (0.2552) (0.2080) (0.2299) (0.2436) 

[7] 0.0899 0.0827 0.0816 0.0812 0.0859 0.0682 0.0847 0.0614 0.0895 0.0740 

 (0.2984) (0.2558) (0.27417) (0.2772) (0.1670) (0.1400) (0.1766) (0.1338) (0.1786) (0.1471) 

[8] 0.0812 0.0828 0.0847 0.08160 0.0717 0.0616 0.0753 0.0620 0.0875 0.0686 

 (0.3027) (0.2554) (0.2710) (0.3014) (0.1714) (0.1872) (0.1859) (0.1684) (0.1763) (0.1267) 

[9] 0.0879 0.0767 0.0789 0.0857 0.0623 0.0923 0.0408 0.0658 0.0529 0.0734 

 (0.3010) (0.2611) (0.2847) (0.2986) (0.2187) (0.2096) (0.2315) (0.1879) (0.2515) (0.1302) 

[10] 0.0842 0.0904 0.0901 0.0882 0.0864 0.0612 0.0867 0.0616 0.0878 0.0636 

 (0.1103) (0.0824) (0.1100) (0.1102) (0.1119) (0.1181) (0.2096) (0.2279) (0.2533) (0.1844) 

[11] 0.0983 0.0976 0.0978 0.0982 0.0644 0.0588 0.0802 0.0566 0.0712 0.0626 

 (0.4332) (0.2354) (0.3041) (0.3427) (0.3618) (0.3257) (0.4169) (0.2946) (0.4184) (0.1902) 

[12] 0.0981 0.0976 0.0977 0.0980 0.0743 0.0504 0.0748 0.0641 0.0769 0.0625 

 (0.2954) (0.2505) (1.1089) (1.2438) (0.3727) (0.3420) (0.4277) (0.3104) (0.4197) (0.2027) 

[13] 0.0765 0.0970 0.0769 0.0966 0.0853 0.0620 0.0855 0.0655 0.0624 0.0641 

 (0.3143) (0.2357) (0.3008) (0.3100) (0.1468) (0.1143) (0.2099) (0.1693) (0.3071) (0.1490) 

[14] 0.0918 0.0860 0.0871 0.0860 0.0720 0.0528 0.0755 0.0664 0.0873 0.0657 

 (0.3526) (0.2389) (0.3044) (0.3396) (0.1974) (0.2066) (0.2034) (0.1947) (0.3024) (0.1395) 

[15] 0.0815 0.0775 0.0805 0.0887 0.06491 0.0578 0.0949 0.0615 0.0852 0.0620 

 (0.3793) (0.2858) (0.3000) (0.3561) (0.2085) (0.2040) (0.2281) (0.2264) (0.3103) (0.1408) 

[16] 0.0864 0.0926 0.0970 0.0801 0.0805 0.0822 0.0887 0.0606 0.0743 0.0743 

 (0.3007) (0.2778) (0.2920) (0.3001) (0.2433) (0.1681) (0.2664) (0.1556) (0.3197) (0.1472) 

[17] 0.0811 0.0800 0.0822 0.0889 0.0720 0.1069 0.0928 0.0731 0.0549 0.1278 

 (0.3886) (0.2803) (0.2973) (0.3623) (0.2026) (0.2002) (0.2168) (0.2161) (0.3585) (0.1476) 

[18] 0.0824 0.0522 0.0547 0.0823 0.0917 0.0658 0.0669 0.0744 0.0933 0.0857 

 (0.4230) (0.2814) (0.2989) (0.3838) (0.2059) (0.2023) (0.2298) (0.2607) (0.3309) (0.1550) 
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Table 4. AE and MSEs for ML and BEs under BSEL and BLINEXL functions of γ. 

 

CS MLE BE 

BSEL BLINEX 

ω=0 ω=0.2 ω=0.8 ω=0 ω=0.2 ω=0.8 

   c=1 c=5 c=1 c=5 c=1 c=5 

[1] 0.3395 0.3097 0.3264 0.3765 0.2638 0.2565 0.2879 0.2837 0.3654 0.2862 

 (0.1269) (0.0931) (0.0980) (0.1183) (0.0851) (0.0503) (0.08910) (0.0867) (0.1135) (0.0805) 

[2] 0.3129 0.3234 0.3105 0.3373 0.2807 0.2936 0.2654 0.3066 0.3248 0.3695 

 (0.1307) (0.1436) (0.1361) (0.1284) (0.1112) (0.0525) (0.1109) (0.0567) (0.1228) (0.0892) 

[3] 0.3154 0.2653 0.2353 0.2454 0.2108 0.3206 0.3892 0.3288 0.3321 0.3773 

 (0.1315) (0.1527) (0.1416) (0.1289) (0.1183) (0.0856) (0.1147) (0.0553) (0.1230) (0.0889) 

[4] 0.2791 0.2362 0.3447 0.2705 0.2978 0.2625 0.3133 0.2898 0.2621 0.3090 

 (0.0780) (0.0810) (0.0809) (0.0821) (0.0822) (0.0789) (0.0856) (0.0747) (0.0810) (0.0736) 

[5] 0.2701 0.2933 0.2486 0.3147 0.2461 0.2809 0.2077 0.3075 0.3024 0.2681 

 (0.0880) (0.0892) (0.0887) (0.0850) (0.0859) (0.0592) (0.0987) (0.0619) (0.0909) (0.0777) 

[6] 0.2806 0.3625 0.3061 0.3370 0.3138 0.3415 0.2616 0.3224 0.3223 0.2868 

 (0.0981) (0.0972) (0.0969) (0.0994) (0.0954) (0.0813) (0.0942) (0.0798) (0.1040) (0.0894) 

[7] 0.2755 0.3033 0.3177 0.2610 0.2679 0.2431 0.2883 0.2715 0.2527 0.2982 

 (0.0910) (0.0706) (0.0734) (0.0856) (0.0660) (0.0731) (0.0682) (0.0669) (0.0829) (0.0652) 

[8] 0.2806 0.2033 0.2788 0.3051 0.2629 0.3189 0.2451 0.3259 0.2958 0.2605 

 (0.0858) (0.1055) (0.0977) (0.0858) (0.0856) (0.0439) (0.0826) (0.0476) (0.0830) (0.0688) 

[9] 0.2729 0.2314 0.2997 0.3046 0.2906 0.2431 0.2645 0.2428 0.2941 0.2580 

 (0.0772) (0.1081) (0.0953) (0.0767) (0.0864) (0.0389) (0.0786) (0.0410) (0.0735) (0.0587) 

[10] 0.3158 0.2428 0.2658 0.3349 0.2692 0.3358 0.3030 0.2718 0.3155 0.2586 

 (0.2180) (0.1747) (0.1891) (0.2447) (0.1467) (0.1543) (0.1583) (0.1394) (0.2270) (0.1167) 

[11] 0.2712 0.2763 0.2553 0.1922 0.1895 0.3091 0.1825 0.3290 0.1712 0.2533 

 (0.2674) (0.1995) (0.1952) (0.2062) (0.1397) (0.0673) (0.1453) (0.0669) (0.1902) (0.0962) 

[12] 0.2385 0.3526 0.3298 0.2613 0.2593 0.2561 0.2512 0.2803 0.2383 0.3057 

 (0.2765) (0.2744) (0.2652) (0.2665) (0.1927) (0.0704) (0.1972) (0.0731) (0.2444) (0.1194) 

[13] 0.3087 0.2949 0.2976 0.3059 0.2441 0.2708 0.2566 0.2995 0.2953 0.3281 

 (0.1345) (0.1231) (0.1253) (0.1321) (0.1039) (0.0854) (0.1088) (0.0817) (0.1270) (0.0936) 

[14] 0.3160 0.2130 0.1936 0.2354 0.2574 0.2671 0.2485 0.2868 0.2307 0.2691 

 (0.1361) (0.1612) (0.1539) (0.1388) (0.1278) (0.0691) (0.1281) (0.0721) (0.1331) (0.1013) 

[15] 0.2201 0.3226 0.2821 0.2606 0.2615 0.2545 0.2311 0.2635 0.2465 0.3101 

 (0.1355) (0.2419) (0.2131) (0.1492) (0.1898) (0.0819) (0.1737) (0.0874) (0.1417) (0.1157) 

[16] 0.2834 0.2429 0.2510 0.2753 0.2971 0.2390 0.3136 0.2681 0.2653 0.2997 

 (0.1115) (0.0927) (0.0960) (0.1072) (0.0819) (0.0826) (0.0858) (0.0764) (0.1034) (0.0771) 

[17] 0.3052 0.2552 0.2252 0.2352 0.2005 0.3128 0.2792 0.2226 0.2221 0.2706 

 (0.1121) (0.1151) (0.1100) (0.1142) (0.1197) (0.0610) (0.1227) (0.0646) (0.1185) (0.0901) 

[18] 0.3179 0.3144 0.3551 0.2772 0.3536 0.3144 0.3008 0.3259 0.2600 0.3176 

 (0.1114) (0.2692) (0.1216) (0.1269) (0.1118) (0.0786) (0.1776) (0.0813) (0.1196) (0.0998) 

 
Table 5. AE and MSEs for ML and BEs under BSEL and BLINEXL functions of η. 

 

CS MLE BE 

BSEL BLINEX 

ω=0 ω=0.2 ω=0.8 ω=0 ω=0.2 ω=0.8 

   c=1 c=5 c=1 c=5 c=1 c=5 

[1] 0.2459 0.1997 0.2264 0.2485 0.2125 0.2214 0.1954 0.1987 0.2058 0.2145 

 (0.0218) (0.0331) (0.0380) (0.0383) (0.0351) (0.0113) (0.0291) (0.0267) (0.0335) (0.0205) 

[2] 0.1845 0.1984 0.2015 0.1875 0.1925 0.2006 0.2021 0.1987 0.2248 0.2145 

 (0.0217) (0.0126) (0.0261) (0.0184) (0.0112) (0.0225) (0.0209) (0.0267) (0.0156) (0.0292) 

[3] 0.2154 0.2087 0.2065 0.2045 0.2054 0.2060 0.2192 0.1988 0.2121 0.1987 

 (0.0215) (0.0427) (0.0316) (0.0109) (0.0123) (0.0256) (0.0347) (0.0253) (0.0130) (0.0389) 

[4] 0.2051 0.2142 0.2147 0.2305 0.2088 0.2025 0.2123 0.2017 0.2021 0.2091 

 (0.0280) (0.0210) (0.0209) (0.0221) (0.0222) (0.0289) (0.0256) (0.0247) (0.0210) (0.0236) 

[5] 0.2065 0.2123 0.2106 0.1907 0.1961 0.2109 0.2071 0.2075 0.2024 0.2121 
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 (0.0280) (0.0292) (0.0283) (0.0250) (0.0259) (0.0292) (0.0387) (0.0119) (0.0309) (0.0277) 

[6] 0.2150 0.2095 0.2061 0.2150 0.2138 0.1954 0.2016 0.2224 0.2223 0.2068 

 (0.0381) (0.0372) (0.029) (0.0394) (0.0354) (0.0213) (0.0342) (0.0198) (0.0340) (0.0294) 

[7] 0.2025 0.1953 0.2194 0.2020 0.2210 0.2054 0.2104 0.2046 0.1984 0.1935 

 (0.0310) (0.0206) (0.0134) (0.0256) (0.0060) (0.0131) (0.0082) (0.0069) (0.0229) (0.0052) 

[8] 0.2065 0.2033 0.2210 0.2051 0.2015 0.9589 0.8551 0.9459 0.9358 0.2005 

 (0.0258) (0.0255) (0.0327) (0.0228) (0.0216) (0.0029) (0.0216) (0.0186) (0.0210) (0.0168) 

[9] 0.2029 0.2114 0.2015 0.2046 0.2106 0.2094 0.2070 0.2098 0.2047 0.1980 

 (0.0312) (0.0241) (0.0353) (0.0267) (0.0264) (0.0289) (0.0386) (0.0110) (0.0135) (0.0187) 

[10] 0.2158 0.1938 0.1908 0.2349 0.2054 0.2058 0.2030 0.2118 0.2155 0.2080 

 (0.0180) (0.0247) (0.0191) (0.0247) (0.0127) (0.0113) (0.0223) (0.0154) (0.0124) (0.0127) 

[11] 0.1912 0.1984 0.1932 0.1920 0.1890 0.1937 0.1828 0.2291 0.1812 0.1904 

 (0.0274) (0.0295) (0.0152) (0.0262) (0.0197) (0.0173) (0.0253) (0.0169) (0.0102) (0.0262) 

[12] 0.2054 0.2426 0.2298 0.2023 0.2184 0.2011 0.2042 0.2003 0.2047 0.2057 

 (0.0165) (0.0244) (0.0252) (0.0265) (0.0227) (0.0104) (0.0272) (0.0131) (0.0144) (0.0114) 

[13] 0.1932 0.1949 0.1976 0.2059 0.1902 0.1708 0.1976 0.1995 0.1953 0.2281 

 (0.0145) (0.0131) (0.0253) (0.0321) (0.0039) (0.0254) (0.0188) (0.0217) (0.0270) (0.0136) 

[14] 0.2010 0.2130 0.1936 0.2354 0.2074 0.2310 0.2240 0.2102 0.2165 0.2024 

 (0.0361) (0.0112) (0.0239) (0.0388) (0.0278) (0.0191) (0.0281) (0.0121) (0.0331) (0.0113) 

[15] 0.1901 0.1930 0.1902 0.1972 0.1902 0.1945 0.1842 0.2045 0.2065 0.2101 

 (0.0255) (0.0119) (0.0131) (0.0292) (0.0298) (0.0219) (0.0237) (0.0274) (0.0117) (0.0157) 

[16] 0.2045 0.2064 0.2103 0.2079 0.2107 0.2064 0.2136 0.2081 0.2153 0.2049 

 (0.0115) (0.0227) (0.0260) (0.0172) (0.0219) (0.0226) (0.0258) (0.0264) (0.0134) (0.0271) 

[17] 0.2052 0.1902 0.1947 0.1932 0.1894 0.2147 0.2065 0.2210 0.2011 0.2006 

 (0.0121) (0.0151) (0.0100) (0.0142) (0.0197) (0.0110) (0.0227) (0.0246) (0.0185) (0.0201) 

[18] 0.2015 0.2144 0.1951 0.1872 0.1936 0.1944 0.2004 0.1959 0.2054 0.2176 

 (0.0114) (0.0292) (0.0216) (0.0269) (0.0118) (0.0286) (0.0376) (0.0213) (0.0196) (0.0298) 

 
Table 6. 95% approximate and credible CIs for α and λ . 

 

CS MLE BE 

α λ α λ 
[1] 1.4471(0.944) 0.0785(0.930) 1.4255(0.972) 0.088(0.962) 

[2] 1.3459(0.940) 0.0764(0.932) 1.3058(0.972) 0.0713(0.940) 

[3] 1.3239(0.932) 0.078(0.932) 1.2905(0.958) 0.0762(0.938) 

[4] 1.3324(0.928) 0.06513(0.916) 1.3160(0.944) 0.0846(0.940) 

[5] 1.2838(0.936) 0.0933(0.918) 1.2366(0.932) 0.0939(0.922) 

[6] 1.2631(0.926) 0.0945(0.934) 1.2160(0.936) 0.0723(0.926) 

[7] 1.3290(0.946) 0.0831(0.946) 1.3151(0.982) 0.0820(0.962) 

[8] 1.2482(0.930) 0.0743(0.930) 1.2146(0.964) 0.0849(0.942) 

[9] 1.2092(0.918) 0.0857(0.928) 1.5833(0.940) 0.0928(0.940) 

[10] 1.1880(0.934) 0.0833(0.940) 1.7445(0.986) 0.0902(0.962) 

[11] 1.5486(0.920) 0.0795(0.920) 1.4908(0.982) 0.0815(0.948) 

[12] 1.4997(0.918) 0.092(0.930) 1.4558(0.954) 0.0910(0.950) 

[13] 1.4008(0.920) 0.082(0.930) 1.3761(0.950) 0.0780(0.932) 

[14] 1.3846(0.936) 0.092(0.918) 1.3442(0.936) 0.06513(0.930) 

[15] 1.3761(0.934) 0.0880(0.934) 1.3217(0.932) 0.0935(0.926) 

[16] 1.3946(0.956) 0.086(0.920) 1.3725(0.966) 0.0941(0.938) 

[17] 1.3500(0.948) 0.0969(0.940) 1.3059(0.968) 0.0833(0.946) 

[18] 1.3097(0.936) 0.0747(0.950) 1.2545(0.936) 0.0747(0.952) 

 
Table 7. 95% approximate and credible CIs for γ and η . 

 

CS MLE BE 

γ η γ η 
[1] 0.2402(0.938) 0.2829(0.960) 0.252(0.976) 0.1888(0.948) 

[2] 0.2164(0.922) 0.2367(0.95) 0.3030(0.966) 0.2213(0.948) 

[3] 0.378(0.938) 0.2110(0.938) 0.2522(0.966) 0.2262(0.934) 

[4] 0.2513(0.938) 0.2311(0.952) 0.2656(0.946) 0.1846(0.948) 
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[5] 0.3033(0.932) 0.1855(0.934) 0.3049(0.940) 0.2039(0.938) 

[6] 0.2745(0.938) 0.2674(0.944) 0.3134(0.926) 0.2223(0.912) 

[7] 0.2331(0.932) 0.1752(0.960) 0.2844(0.966) 0.2420(0.962) 

[8] 0.2943(0.934) 0.1644(0.958) 0.2896(0.958) 0.2149(0.942) 

[9] 0.2457(0.926) 0.2396(0.956) 0.3311(0.950) 0.2228(0.942) 

[10] 0.2533(0.930) 0.1561(0.964) 0.2859(0.958) 0.2002(0.968) 

[11] 0.2595(0.918) 0.1969(0.940) 0.3676(0.964) 0.2415(0.940) 

[12] 0.252(0.916) 0.2347(0.950) 0.3263(0.946) 0.1960(0.944) 

[13] 0.2406(0.938) 0.2734(0.952) 0.3355(0.954) 0.2471(0.950) 

[14] 0.2900(0.926) 0.2626(0.950) 0.3270(0.958) 0.207(0.928) 

[15] 0.2009(0.940) 0.2563(0.948) 0.327(0.930) 0.1673(0.962) 

[16] 0.2602(0.952) 0.2307(0.958) 0.2853(0.954) 0.1860(0.962) 

[17] 0.2679(0.920) 0.2218(0.946) 0.3277(0.934) 0.1979(0.926) 

[18] 0.2300(0.924) 0.1986(0.948) 0.2548(0.924) 0.1709(0.972) 

 
Table 8. BEs under BSEL and BLINEX for a simulated data. 

 

parameter ω BSEL BLINEX 

c=1 c=5 

α 0.2  1.4317 1.3477 

0.8 1.4522 1.5311 1.4859 

λ 0.2 1.5379 0.0831 0.0859 

0.8 0.0694 0.0854 0.0933 

γ 0.2 0.0738 0.2699 0.2740 

0.8 0.3683 0.2629 0.3110 

η 0.2 0.3767 0.1927 0.2057 

0.8 0.2186 0.1978 0.2024 

Appendix 

From the log-likelihood function in (13), we have  
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