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ABSTRACT: This study introduces an advanced algorithm based on the Generalized Least Deviation Method
(GLDM) tailored for the univariate time series analysis of COVID-19 data. At the core of this approach is the
optimization of a loss function, strategically designed to enhance the accuracy of the model’s predictions. The
algorithm leverages second-order terms, crucial for capturing the complexities inherent in time series data. Our
findings reveal that by optimizing the loss function and effectively utilizing second-order model dynamics, there is a
marked improvement in the predictive performance. This advancement leads to a robust and practical forecasting tool,
significantly enhancing the accuracy and reliability of univariate time series forecasts in the context of monitoring
COVID-19 trends.

Keywords: GLDM Algorithm; Time Series Forecasting; Loss Function Minimization; COVID-19 Time Series;
Noise-Reduction Algorithm

1. INTRODUCTION
The COVID-19 pandemic has created an urgent demand for advanced analytical tools to predict its spread and assess

potential public health interventions. Mathematical modeling, particularly using univariate time series analysis, provides
a valuable framework for making these predictions and understanding the future trajectory of the epidemic. This research
introduces a novel algorithm based on the Generalized Least Deviation Method (GLDM), specifically designed for
epidemic data. This algorithm focuses on optimizing a well-defined loss function to improve forecasting accuracy.

In our model, the observed data at time t, vt, is predicted based on past data points, vt−m, using corresponding coefficients
ci and a stochastic error term δt. The functions fi capture the relationships within the data. Our approach aims to minimize
a loss function L(c), which enhances the model’s predictive performance by accurately adjusting the coefficients c based
on past data. This optimization is achieved through a carefully developed algorithm that iteratively refines the coefficients,
ensuring the model remains robust and adaptable to new data. By focusing on significant coefficients and systematically
minimizing the loss function, our algorithm demonstrates exceptional capability in forecasting epidemiological trends.
This makes it a critical tool for public health planning and response during the ongoing pandemic.

Time series modeling and forecasting are critical across economic, social, and environmental sectors, driving precise
predictions that inform prevention, control, and strategic planning [1–11]. The pursuit of advanced predictive systems for
time series analysis has become a focal point in scientific research, yielding an extensive body of literature. The ongoing
quest for precision in forecasts and the continuous enhancement of algorithms keep predictive modeling at the forefront of
research agendas. Given the unique attributes of each time series, no universal solution for forecasting exists; the choice
of model is inherently dictated by the specific characteristics of the data under consideration, necessitating a tailored
approach that adapts to new insights and methodologies [12–19].
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Significant challenges have been encountered by researchers in forecasting real-time COVID-19 cases using traditional
mathematical, statistical, and machine learning-based tools. In March 2020, studies using simple and efficient forecasting
methods like the exponential smoothing model were conducted. These studies predicted cases ten days ahead with
large confidence intervals. Despite the positive bias, the forecast error was found to be reasonable [20]. Forecasts using
previously employed linear and exponential models were conducted for better preparation in terms of hospital bed
availability, ICU admission estimation, resource allocation, emergency funding, and the proposal of strong containment
measures [21]. Projections for ICU admissions in Italy were made for March 20, 2020. By the end of March 2020,
ICU admissions and mechanical ventilation for critically ill patients reached their peak, shattering the health system of
Lombardy, Italy [22]. Consequently, contemporary research spans a diverse array of models, including straightforward
linear methods such as the Autoregressive Integrated Moving Average (ARIMA)[23–29].to Seasonal Autoregressive
Integrated Moving Average (SARIMA)[30, 31], advanced nonlinear methods utilizing machine learning (ML) [32–38].
There’s now a lot of knowledge about tracking vibration signals to check and predict the health and life of machines.
Therefore, making these checks faster and more accurate, especially for special machines that work really hard, is very
important. This is shown by[39, 40]. Often, understanding a machine’s dynamics helps solve these issues. Finding the right
math model to link a machine’s condition with its diagnostic signs makes this easier. Models might include difference
equations, phenomenological models, structural models, or regression models. The best model depends on the specific
traits and behavior of the process being studied. For a long time, using statistics, neural networks, or math models for
identification has been crucial across various fields. Today, these approaches are applied beyond industry, including efforts
to predict the course of the Covid-19 pandemic, as illustrated by [41]. This work evaluates different well-known models’
ability to forecast pandemic trends, develops software to run these methods, and conducts computational experiments
with Covid-19 data. The authors find that their forecasting approach is versatile, applicable to various time series. Most
predictions, particularly with large datasets, rely on various neural network models. For instance, [42] The study focuses
on a neural network model designed for short-term predictions of ferrosilicon prices in Russia’s domestic market. This
model stands out for its accuracy and could support strategic decision-making at research institutes and metallurgical
companies. The article outlines econometric models for assessing the metallurgical industry’s economic indicators and
forecasting ferrous metal production and its future growth. However, these models often seem like a "black box," providing
answers without clear insight into how they work. To improve forecast quality, some researchers turn to cognitive modeling
alongside neural networks[43, 44]. Given that the mentioned models focus on short-term forecasting, there’s an urgent
need to develop a mathematical approach for deriving high-quality quasi-linear difference equations.

As we delve deeper into the intricacies of epidemiological modeling, particularly within the realm of univariate time
series analysis, the importance of mathematical precision and analytical rigor cannot be overstated. The coefficients c =
{c1, c2, . . . , cn(m)}, integral to our GLDM algorithm, play a pivotal role in quantifying the historical influence on current
and future pandemic trends. These coefficients, through the process of loss function optimization, enable our algorithm
to accurately model the dynamic nature of disease spread. This approach not only enhances the predictive capacity of our
model but also emphasizes the significance of each variable in the univariate series, highlighting the nuanced interplay
between past and predicted outcomes. By leveraging this algorithmic framework, we aim to provide a robust tool for
forecasting epidemiological patterns, thereby offering a significant contribution to public health analytics and decision-
making processes.

2. NOVELTY AND KEY DIFFERENCES
The suggested GLDM (Generalized Least Deviation Method) and classical regression, along with several other models,

are used for modeling and forecasting data. This section discussed the key differences and novelties for these approaches.

2.1 GLDM: GENERALIZED LEAST DEVIATION METHOD

GLDM aims to minimize the deviation between observed and predicted values by optimizing a specifically defined
loss function. This approach offers several novelties:

• Objective: GLDM formulates the objective as follows:

min
c

L(c) =
1
T

T∑
t=1

(vt − v̂t(c))2,

where vt represents the observed value, v̂t(c) is the predicted value, and c represents the coefficients.

• Model Structure: GLDM utilizes a quasilinear recurrence equation model that captures the current value of the
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variable being predicted as a combination of past values and their corresponding coefficients:

vt =

p∑
i=1

ci fi({vt−m}
q
m=1) + δt,

where fi represents a function that incorporates higher-order terms and nonlinearity.

• Robustness: GLDM is known for its robustness against outliers and its ability to handle nonlinear patterns.

• Forecasting Capability: GLDM is specifically designed for time series forecasting and can effectively capture
temporal dependencies in the data.

• Advantages over Other Models: GLDM offers several advantages over traditional and other modern models:

– Holt’s Linear Trend Model: GLDM can handle nonlinear trends more effectively than Holt’s linear trend
model by incorporating nonlinear terms and functions in its model structure.

– BATS and TBATS Models: GLDM provides better robustness against outliers compared to BATS and TBATS
models, and can capture nonlinear patterns more effectively.

– NNAR: GLDM provides a more interpretable model compared to Neural Network Autoregression (NNAR),
as it utilizes a combination of past values and coefficients which simplifies understanding the relationship
between predictors and the forecasted variable.

– Classical Models: GLDM improves upon classical models such as Simple Moving Average (SMA) and
Exponential Smoothing (ES) by incorporating a more sophisticated model structure that captures higher-order
terms and nonlinearity, enabling it to handle complex patterns and dependencies in the data more effectively.

2.2 ARIMA: AUTOREGRESSIVE INTEGRATED MOVING AVERAGE

ARIMA is a widely used model for time series forecasting. It combines autoregressive (AR), differencing (I), and
moving average (MA) components [29]. The model equation can be expressed as:

vt = d +
p∑

i=1

ϕivt−i +

q∑
j=1

θ jδt− j + δt,

where d is a constant term, ϕi and θ j are the autoregressive and moving average coefficients, and δt represents the error
term.

Advantages of GLDM over ARIMA:

• GLDM can handle nonlinear patterns more effectively than ARIMA, as it incorporates higher-order terms and
nonlinear functions in its model structure.

• GLDM is known for its robustness against outliers, which can be beneficial when dealing with data containing
extreme observations.

2.3 HOLT’S LINEAR TREND MODEL

Holt’s linear trend model is suitable for time series data with a linear trend. It consists of two components: the level
(ℓt) and the trend (bt). The model equations are given by [45]:

ℓt = αvt + (1 − α)(ℓt−1 + bt−1),

bt = β(ℓt − ℓt−1) + (1 − β)bt−1,

v̂t+h = ℓt + hbt,

where α and β are smoothing parameters, and v̂t+h represents the forecasted value at time t + h.
Advantages of GLDM over Holt’s Linear Trend Model:

• GLDM can handle nonlinear trends more effectively than Holt’s linear trend model by incorporating nonlinear terms
and functions in its model structure.

• GLDM’s quasilinear autoregressive model captures temporal dependencies more explicitly, which can improve
forecasting accuracy compared to Holt’s linear trend model.
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2.4 BATS AND TBATS MODELS

BATS (Box-Cox transformation, ARMA errors, Trend, and Seasonal components) and TBATS (Trigonometric season-
ality, Box-Cox transformation, ARMA errors, Trend, and Seasonal components) models are designed to handle time series
with multiple seasonal patterns, nonlinear trends, and transformations. The core equations for these models incorporate
complex seasonal structures[46]:

vt = Box-Cox(vt, λ) +
p∑

i=1

ϕivt−i +

q∑
j=1

θ jδt− j + mt + δt,

where mt represents the seasonal component modeled either through Fourier terms or specific seasonal ARMA pro-
cesses.

Advantages of GLDM over BATS and TBATS Models:

• GLDM offers superior robustness against outliers compared to BATS and TBATS models, making it more reliable
in the presence of extreme observations.

• Due to its a quasilinear recurrence equation structure, GLDM is more effective at capturing complex nonlinear
patterns that can occur in highly dynamic time series data.

2.5 NNAR: NEURAL NETWORK AUTOREGRESSION

NNAR is a type of model that utilizes neural networks to forecast future values based on past data points. It is
particularly suited for capturing nonlinear relationships within the data. The typical NNAR model structure can be
described by the following function[47]

vt = f (vt−1, vt−2, . . . , vt−p) + δt,

where f represents a neural network function designed to map past values to a future prediction.
Advantages of GLDM over NNAR:

• GLDM provides greater interpretability compared to NNAR models. By using explicit mathematical functions and
coefficients, GLDM allows for easier understanding and analysis of how inputs affect forecasts.

• The structured nature of GLDM, with its reliance on quasilinear terms and parameterized functions, offers better
insights into temporal dependencies than the often "black-box" nature of neural networks.

2.6 CLASSICAL MODELS

Classical forecasting models such as the Simple Moving Average (SMA) and Exponential Smoothing (ES) provide
baseline methodologies for time series analysis. These models generally employ simpler calculations, which can be
described as follows:

Simple Moving Average (SMA):

vt =
1
n

t∑
i=t−n+1

vi,

Exponential Smoothing (ES):
vt = αvt−1 + (1 − α)vt−2,

where n is the number of terms to average, and α is the smoothing factor.
Advantages of GLDM over Classical Models:

• GLDM’s advanced modeling capabilities allow it to handle data complexities and intricacies that classical models
cannot, such as non-linearities and structural breaks in the data series.

• By optimizing a loss function that minimizes deviation between observed and predicted values, GLDM provides a
more accurate and robust approach to forecasting, especially in scenarios where data exhibit volatility and irregular
trends.
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3. METHOD

Before delving into the specifics of our methodological approach for predicting daily COVID-19 cases, it is essential
to underscore the mathematical and computational framework underpinning the Generalized Least Deviation Method
(GLDM). Central to GLDM is the goal of minimizing the deviation between observed and predicted COVID-19 case
counts, formalized as the optimization problem: minimize L(c) =

∑n
i=1 |vi − v̂i(c)|, where vi represents the observed daily

case numbers, v̂i(c) the predicted case numbers derived from the model, and c = {c1, c2, ..., cn(m)} the set of model
coefficients. This method’s efficacy stems from its robustness against outliers and its capability to yield dependable
forecasts amidst non-linear disease spread patterns. Through the application of GLDM across varying datasets and model
complexities, we aim to reveal the optimal model configuration that strikes a balance between forecasting accuracy and
model complexity. This endeavor lays a solid groundwork for subsequent analysis and discussions concerning the model’s
performance and its suitability for predicting the course of the COVID-19 pandemic.

The initial stage of the forecasting procedure involves a Time Series dataset, denoted as {vt} ∈ R
T
t=1−m, where each vt

signifies a datum at time t, encapsulated within a period from 1 to T , with the initiation at an earlier point indexed by m.

Subsequent to the collection of time series data, the process incorporates a GLDM Estimator algorithm. GLDM,
postulated as an acronym for Generalized Least Deviation Method, is postulated to calibrate the data, deducing a set
of pivotal factors {c1, c2, . . . , cn(m)} ∈ R. These factors, intrinsic real numbers, epitomize the inferred parameters obtained
from the time series data.

These extracted factors are then harnessed by a Predictor mechanism to prognosticate future values. This predictor
is designed to generate outputs encapsulating the Forecasting Horizon (FH) and prospective forward-looking values,
indicative of the temporal scope and expected data points for this horizon respectively.

3.1 OVERVIEW OF GLDM MODEL APPLICATION

In our analysis, we apply the Generalized Least Deviation Method (GLDM) alongside the Weighted Least Deviation
Method (WLDM) to effectively model and forecast COVID-19 time series data. This comprehensive approach starts with
the initialization of data, proceeds through various estimation and optimization steps, and culminates in the generation of
forecasts. Figure 1 provides a visual summary of these sequential steps, illustrating the methodical process employed to
ensure accuracy and reliability in our predictions.
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FIGURE 1. Flowchart illustrating the steps involved in the application of the GLDM model to COVID-19 time series data.

3.2 STEPS IN APPLYING THE GLDM MODEL

1. Time Series Data Initialization
Initialization: {vt}

T
t=1−m ⊆ R (1)

2. GLDM Estimator
Apply GLDM for initial estimation of c = {c1, c2, . . . , cn(m)} (2)

3. Apply Quasilinear Recurrence Equations

vt =

p(q)∑
i=1

ci fi
(
{vt−m}

q
m=1

)
+ δt (3)

4. WLDM Estimator
Refine c using WLDM, focusing on minimizing deviations. (4)
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5. Dual Problem Solution
Solve the dual optimization problem to refine c. (5)

6. Optimization Problem Solution

Final optimization of c to minimize L(c). (6)

7. Predictor Setup
Configure the predictor with optimized c for future forecasting. (7)

8. Forecast Generation

v[t]τ =
p(q)∑
i=1

c∗i fi
(
{v[t]τ−k}

q
k=1

)
(8)

3.3 QUASILINEAR RECURRENCE EQUATIONS

Quasilinear recurrence equations represent a sophisticated class of difference equations that integrate linear and non-
linear dynamics to model the evolution of time series data. The general form of these equations is expressed as follows:

vt =

p(q)∑
i=1

ci fi
(
{vt−m}

q
m=1

)
+ δt (9)

where:

• vt denotes the time series value at time t,

• ci are the coefficients or parameters of the model,

• fi
(
{vt−m}

q
m=1

)
represents functions that depend on the past q values of the time series, embodying both linear and

nonlinear interactions,

• δt is the stochastic error term, which accounts for the noise in the data.

The key characteristics of quasilinear recurrence equations are outlined as follows:

1. Linearity in Parameters: Despite potential nonlinearity in the functions fi, the overall equation remains linear
with respect to the coefficients ci. This structure ensures that the prediction v̂t is a linear amalgamation of the model
terms fi

(
{vt−m}

q
m=1

)
, where the coefficients ci determine the weight of each term.

2. Nonlinearity in Past Values: The functions fi allow for the inclusion of nonlinear relationships between the current
value vt and the past q values {vt−m}

q
m=1. This capability is essential for capturing complex dynamics that linear

models fail to represent.

3. Flexibility in Model Structure: The model can be customized through the choice of functions fi, which can
be designed to capture various nonlinear patterns such as polynomial, trigonometric, or exponential forms. This
flexibility enables the model to adapt effectively to the specific characteristics of the time series being analyzed.

The order of a quasilinear recurrence equation, denoted by q, indicates the number of past time steps included in
the model. For example, a first-order model includes only the immediate past value vt−1, while a second-order model
also considers vt−2. Models of higher order involve more past values, allowing for the capture of more detailed temporal
dependencies but also increasing the risk of overfitting, particularly when the number of parameters is large relative to the
amount of data available.

Estimation of the coefficients ci typically involves optimizing a loss function, such as the sum of squared errors or the
sum of absolute deviations. This optimization process aims to identify the best-fit coefficients that align closely with the
observed time series data, thus enabling the model to generate accurate forecasts and provide deeper insights into the time
series dynamics.

Quasilinear recurrence equations provide a powerful and interpretable tool for time series modeling and forecasting.
Analyzing the estimated coefficients ci offers insights into the importance of various factors influencing the evolution of
the time series, including potential nonlinear interactions between past values.
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3.4 PROBLEM NOTATION AND STATEMENT

The considered algorithm operates as follows (see Fig. 2).

FIGURE 2. The framework for applying the model

Let’s examine a time series for a specific tile. This approach can be extended to other tiles with adjustments to the
parameters.

Linear autoregressive models offer a limited forecast range. Building suitable nonlinear models or neural networks
might not always be feasible due to technical constraints. Quasilinear models, however, can extend the forecasting period.
Let us implement our approach considered in [48] to determine the coefficients c1, c2, c3 . . . , cm ∈ R of a m-th order
quasilinear autoregressive model

vt =

p(q)∑
i=1

ci fi({vt−k}
q
k=1) + δt, t = 1, 2, . . . ,T (10)

Guided by recent updates on state variable values {vt ∈ R}
T
t=1−m at specific time points t, where the functions

fi : ({vt−k}
q
k=1)→ R, for i = 1, 2, . . . , p(q),

are predefined for p(q) scenarios, and the sequence {δt ∈ R}Tt=1 represents the set of unobservable errors.
The method under review focuses on identifying the coefficients of the difference equation outlined in (10). Employing

the GLDM estimation algorithm presented in [48], this technique processes a time series {vt ∈ R}
T
t=−1−m with a minimum

length of T +m ≥ (1+3m+m2). It aims to compute the coefficients c1, c2, c3, . . . , cm ∈ R by addressing the corresponding
optimization problem.

T∑
t=1

arctan

∣∣∣∣∣∣∣
p(q)∑
i=1

ci fi({vt−k}
q
k=1) − vt

∣∣∣∣∣∣∣→ min
{ci}

p(q)
i−1 ⊂R

(11)

The Cauchy distribution

F(ξ) =
1
π

arctan(ξ) +
1
2

possesses the highest entropy among distributions of random variables lacking both mean and variance. Consequently, the
arctan(∗) function is utilized as the loss function.

Let’s consider a m-th order model with quadratic nonlinearity. Then the basic set fi(∗) may contain the following
functions

f(k)({vt−k}
q
k=1) = vt−k, (12)

f(kl)({vt−k}
q
k=1) = vt−k · vt−l,

k = 1, 2, . . . , q; l = k, k + 1, . . . , q.

Obviously, in this case p(q) = 2q + C2
q = q(q + 3)/2 , and the numbering of f(∗) functions can be arbitrary. In particular,

for q = 2 functions f(∗) are the following

f1 = v1, f2 = v2, f3 = v2
1, f4 = v2

2, f5 = v1 · v2.

The model for this case looks like following:

vt = (c1vt−1 + c2vt−2) +
(
c3v2

t−1 + c4v2
t−2 + c5vt−1vt−2

)
. (13)
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The predictor establishes a sequence indexed by t = 1, 2, . . . ,T − 1,T , consisting of m-th order difference equations

v[t]τ =
p(q)∑
i=1

c∗i fi
(
{v[t]−k}

q
k=1

)
,

= t, t + 1, t + 2, t + 3, . . . ,T − 1,T,T + 1, . . . (14)

for lattice functions v[t], where v[t] are forecasted values for v at the specific time t. By solving the Cauchy problem for
this difference equation (14) with initial conditions

v[t]t−1 = vt−1, v[t]t−2 = vt−2, . . . , v[t]t−m = vt−m t = 1, 2, . . . ,T − 1,T, (15)

we determine the function v[t] values.
This approach yields the collection V =

{
v[t]
}T
t=1

of feasible forecasts for v. These forecasts are then utilized to assess
the probabilistic attributes of the anticipated v values.

3.5 EVALUATING BY GLDM

The task described in (11), namely the GLDM-estimation challenge, constitutes a problem with multiple local optima.
GLDM estimations exhibit resilience against correlated data points within {vt ∈ R}

T
t=−1−m, and under proper configurations,

they excel in scenarios where error probability distributions have tails heavier than those of a normal distribution, as
discussed in [49]. These characteristics underscore the practicality of addressing the identification issue presented in (10)
through the solutions provided by (11). Furthermore, by leveraging the connection between GLDM estimates and those
obtained through the Weighted Least Deviation Method (WLDM), as explored by [50], we can efficiently tackle higher-
dimensional instances of (11).

In the context of this study, we explore the GLDM estimation method as outlined in [51], integrating the approach with
the WLDM estimation algorithm within the framework of the GLDM procedure.

The operational flow of the algorithm is depicted in Figure 3, with the following primary inputs:

• S = {S t ∈ R
N}t∈T , representing the linear variety matrix;

• ∇L, denoting the gradient projection of the objective function onto L;

• weight coefficients {pt ∈ R
+}Tt=1, for adjusting the significance of data points;

• and the specified state variables {vt ∈ R
+}Tt=1−m, providing the initial conditions.

The algorithm iterates to converge to the optimal GLDM solution A ∈ Rn(m) alongside the residual vector z ∈ RT . Iteration
ceases once the condition

(
A(k) = A(k−1)

)
is met, indicating stability in the solution.

3.5.1. Evaluating by WLDM
Algorithm WLDM-estimator [52] receives a time series {vt ∈ R}

T
t=1−m and weight factors {pt ∈ R

+}Tt=1 as input data and
calculates the factors

c1, c2, c3 . . . , cp(q) ∈ R

by solving the optimization problem

T∑
t=1

pt ·

∣∣∣∣∣∣∣
p(q)∑
i=1

ci fi({vt−k}
q
k=1) − vt

∣∣∣∣∣∣∣→ min
{ci}

p(q)
i=1 ∈R

p(q)
(16)

This algorithm’s outline is depicted in Figure 4. The computational load of this algorithm is limited to O(T 2), at-
tributable to the straightforward nature of the permissible set: a cross-section of a T -dimensional cuboid (28) with a
(T − p(q))-dimensional linear manifold (27).

The dual problem-solving algorithm (26)–(28) initiates the search for an optimal solution from zero, advancing in the
direction of ∇L. Should the trajectory intersect the boundary of the domain T, the movement in that particular dimension
is halted.

Upon achieving a result (w∗, R∗) through the gradient projection method [48], where w∗ is the prime solution for
(26)-(28), the optimum resolution for the problem (23)-(25) is given by

u∗t =
pt + w∗t

2
, v∗t =

pt − w∗t
2
, t = 1, 2, . . . ,T.
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FIGURE 3. Illustration of the GLDM estimation algorithm.

FIGURE 4. Workflow of the WLDM Estimation Algorithm
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This outcome is derived from the complementarity principle for mutually dual tasks (20)–(22) and (23)–(25), suggesting
that

vt =

p(q)∑
i=1

[
ci fi({vt−k}

q
k=1)
]

∀t < R∗, (17)

vt =

p(q)∑
i=1

[
ci fi({vt−k}

q
k=1)
]
+ z∗t , ∀tinR∗ : w∗t = pt, (18)

vt =

p(q)∑
i=1

[
ci fi({vt−k}

q
k=1)
]
− z∗t , ∀tinR∗ : w∗t = −pt. (19)

Indeed, the solution set ({c∗i }
p(q)
i=1 , z

∗) to the system of linear algebraic equations given by (17)–(19) constitutes the dual
optimal solution for problem (26)-(28) and simultaneously serves as the optimal solution for problem (16). This outcome
substantiates the theorem presented in [53].

Theorem 3.1. Let

• w∗ be the optimal solution of the task (26)-(28),

• ({c∗i }
p(q)
i=1 , z

∗) be the solution of a system of linear algebraic equations (17)-(19).

Then {c∗i }
p(q)
i=1 is the optimal solution to the task (16).

The main problem with the use of the WLDM-estimator is the absence of general formal rules for choosing weight
coefficients. Consequently, this approach requires additional research.

This problem represents a convex piecewise linear optimization problem, and the introduction of additional variables
reduces it to a linear programming problem.

The task (11), i.e. task of GLDM-estimation, is a concave optimization problem, and entering the additional variables
reduces it to the following linear programming task

T∑
t=1

ptzt → min
(c1,c2,...,cp(q))∈Rq,

(z1,z2,...,zT )∈RT

(20)

−zt ≤

p(q)∑
i=1

[
ci fi({vt−k}

q
k=1)
]
− vt ≤ zt, t = 1, 2, . . . ,T, (21)

zt ≥ 0, t = 1, 2, . . . ,T. (22)

The task (20)–(22) has a canonical type with variables p(q) + T and 3T inequality constraints including the conditions of
non-negativity of z j, j = 1, 2, . . . ,T .

The dual to (20) task is

T∑
t=1

(ut − vt) vt → max
u,v∈RT

, (23)

T∑
t=1

ci fi({vt−k}
q
k=1) (ut − vt) = 0, i = 1, 2, . . . , p(q), (24)

ut + vt = pt, ut, vt ≥ 0, t = 1, 2, . . . ,T. (25)

Let us introduce variables wt = ut − vt, t = 1, 2, . . . ,T . Conditions (25) imply that

ut =
pt + wt

2
, vt =

pt − wt

2
, −pt ≤ wt ≤ pt, t = 1, 2, . . . ,T.
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So the optimal task (23)–(25) solution is equal to the optimal solution of task

T∑
t=1

wt · vt → max
w∈RT
, (26)

T∑
t=1

fi({vt−k}
q
k=1) · wt = 0, i = 1, 2, . . . , p(q), (27)

−pt ≤ wt ≤ pt, t = 1, 2, . . . ,T. (28)

Constraints (27) define (T − p(q))-dimensional linear variety L with (p(q) × T )-matrix

S =


f1({v1−k}

q
k=1) f1({v2−k}

q
k=1) . . . f1({vT+1−k}

q
k=1)

f2({v1−k}
q
k=1) f2({v2−k}

q
k=1) . . . f2({vT+1−k}

q
k=1)

...
...

. . .
...

fp(q)({v1−k}
q
k=1) fp(q)({v2−k}

q
k=1) . . . fp(q)({vT+1−k}

q
k=1)


Constraints (28) define T -dimensional parallelepiped T.

The simple structure of the allowed set for task (26)–(28) representing the intersection of (T − p(q))-dimensional linear
variety L (27) and T -dimensional parallelepiped T (28) allows to obtain its solution by an algorithm using the gradient
projection of the objective function (26) (i.e. vector ∇ = {vt}

T
t=1) on the allowed area L ∩ T defined by the constraints

(27)–(28). The projection matrix on L is as following:

S L = E − S T · (S · S T )−1 · S ,

and gradient projection on L is equal to ∇L = SL · ∇. Moreover, if the outer normal on any parallelepiped face forms a
sharp corner with the gradient projection ∇L, then movement by this face is halted.

The DualWLDMSolver Algorithm, as detailed in Algorithm 1, initiates the quest for the optimal solution from zero,
progressing in the direction of the gradient ∇L. Should the current position reach the boundary of the domain T, the
relevant movement coordinate is set to zero.

Algorithm 1 . DualWLDMSolver

Require: :
∇L ▷ Gradient projection
{pt ∈ R

+}Tt=1 ▷Weight factors
Ensure: :

w∗ = arg max
w∈RT

T∑
i=1

wi · vi ▷ Optimal dual solution

R∗ = {t ∈ T : |w∗t | = pt} ▷ Active restrictions

1: w← {wi = 0 : i = 1, 2, . . . ,T }; R← ∅; g = ∇L

2: while (α∗ , 0) do
3: {(α∗, t∗)← arg max {α ≥ 0 : −pt ≤ wt + αgt ≤ pt}}

4: w← w + α∗g; gt∗ ← 0; R := R ∪ {t∗};
5: end while
6: w∗ = w, R∗ = R

return (w∗, R∗)

The computational workload of this algorithm is limited to O(T 2), owing to the straightforward nature of the permis-
sible set: the intersection between a T -dimensional rectangular prism as described in (28) and a (T − p(q))-dimensional
linear manifold referenced in (27). The derived solution set ({c∗i }

p(q)
i=1 , z

∗) from the system of linear equations (17)-(19)
serves as the dual optimum for the issue delineated in (26)-(28) and as the prime solution for the dilemma outlined in (16).
This outcome substantiates the theorem presented below.

Theorem 3.2. Assuming w∗ to be the prime resolution for the issue (26)-(28) and ({c∗i }
p(q)
i=1 , z

∗) as the outcome of the linear
algebraic equation system (17)-(19), then ({c∗i }

p(q)
i=1 epitomizes the optimal solution for the problem (16).
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Algorithm 2 . WLDM-estimator

Require: :
S = {S t ∈ R

N}t∈T ▷ The matrix of a linear subspace L

∇L ▷ Gradient projection on L

{pt ∈ R
+}Tt=1 ▷Weight factors

{vt ∈ R
+}Tt=1−m ▷ Values of the given state variables

Ensure: :
C∗ ∈ Rp(q) ▷ Optimal primal solution
z∗ ∈ RT ▷ Restrictions

1: (w∗, R∗)← DualWLDMSoluter
(
∇L, {pt ∈ R

+}Tt=1

)
2: S ∗ ← {S t : t < R∗}; v∗ ← {vt : t < R∗} ▷ System (17) matrix
3: (C∗)T ← v∗ · (S ∗)−1 ▷ System (17) solution
4: z∗ ← (C∗)TS − v ▷ Find restrictions

return (C∗, z∗)

The above allows us to propose WLDM-estimator Algorithm 2. The main problem with the use of WLDM-estimator
is the absence of general formal rules for choosing weight coefficients. Consequently, this approach requires additional
research. The results established in [51], [54] allow us to reduce the problem of determining GLDM estimation to an
iterative procedure with WLDM estimates.

3.5.2. GLDM estimation algorithm
The GLDM estimation task defined in (11) constitutes a concave optimization challenge. GLDM estimates demonstrate

resilience against correlated data within {X j t : t = 1, 2, . . . ,T ; j = 1, 2, . . . ,N} and, under optimal configurations, excel
in accuracy for error probability distributions with tails heavier than those of a normal distribution [49]. This underlines
the practicality of employing Algorithm (2) to address the identification issue outlined in (10). Insights from [51] enable
simplifying the GLDM estimation into a series of steps utilizing WLDM estimates, detailed in Algorithm 3.

Algorithm 3 . GLDM-estimator

Require: :
S = {S t ∈ R

N}t∈T ▷ The matrix of a linear subspace L

∇L ▷ Gradient projection on L

{pt ∈ R
+}Tt=1 ▷Weight factors

{vt ∈ R
+}Tt=1−m ▷ Values of the given state variables

Ensure: :
C∗ ∈ Rp(q) ▷ Optimal GLDM solution
z∗ ∈ RT ▷ Residuals

1: p← {pt = 1 : t = 1, 2, . . . ,T }
2: (C(1), z(1))←
3: ←WLDMSolver

(
S , ∇L, {pt}

T
t=1, {vt}

T
t=1−m

)
4: for all (t = 1, 2, . . .T ) do
5: pt ←

(
1/
(
1 + (z(1)

t )2
))

6: end for
7: (C(2), z(2))←WLDMSolver

(
S , ∇L, {pt}

T
t=1, {vt}

T
t=1−m

)
8: k ← 2
9: while

(
C(k) , C(k−1)

)
do

10: for all (t = 1, 2, . . .T ) do
11: p(k)

t ←
(
1/
(
1 + (z(k)

t )2
))

12: end for
13: ((C, z))←WLDMSolver

(
S ,∇L, {p

(k)
t }

T
t=1, {vt}

T
t=1−m

)
14: (C(k+1), z(k+1))← (C, z)
15: k ← (k + 1)
16: end while
17: z∗ ← z(k), (C∗)← C(k) ▷ Find restrictions

return (C∗, z∗)
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Theorem 3.3. The series {
(
C(k), z(k)

)
}∞k=1, generated through the GLDM-estimator Algorithm, is guaranteed to approach

the global optimum (c∗, z∗) for the challenge presented in (11).

The analysis of the GLDM-estimator Algorithm shows that its computational demand aligns with that of addressing
primary and/or complementary WLDM issues, as defined in (16). Extensive computational tests have demonstrated that
the average iteration count for the GLDM-estimator Algorithm correlates directly with the number of coefficients, n(m),
in the model equation.

Based on these observations, the computational load for applying the GLDM-estimator Algorithm in real-world
scenarios is estimated to be

O(n(m)3T + n(m) · T 2),

where n(m) represents the number of model parameters and T denotes the number of time steps in the dataset. This
formulation suggests that the complexity increases polynomially with the number of parameters and linearly with the
square of the number of time steps, thus making it feasible for practical applications involving large datasets.

3.6 PREDICTOR

The forecasting mechanism constructs a sequence indexed by t = 1, 2, . . . ,T − 1,T , utilizing m-th order difference
equations (14) applied to lattice functions v[t], where v[t]τ predicts vτ at each time t. We address the Cauchy problem for
these difference equations (14), starting from the initial conditions (15), to determine the values of v[t]. This approach
results in the collection Vτ = {v[t]τ}Tt=1, encompassing all predictions for vτ. Subsequently, this dataset aids in determining
the probabilistic characteristics of vτ, as detailed in Algorithm 4.
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Algorithm 4 . Predictor

Require: :
v = {vt ∈ R

+}Tt=1−m ▷ Values of the given state variables
c = {ci}

n(m)
i=1 ▷ Coefficients from the WLDM solution

Ensure: :
PV[1 : T ][1 : T ] : PV[t][τ] = v[t]τ ▷ Forecast for vτ at time t
ME ▷ Average prediction errors
MAE ▷ Average absolute prediction errors
minFH ▷Minimum reliable prediction horizon

1: while (FH[S tart] < m) do
2: Start++;
3: PV[S tart][0] = v[S tart];
4: PV[S tart][1] = v[S tart + 1];
5: for all (t = S tart + 2, . . . ,m) do
6: py = 0;
7: for all j = 0, 1, . . . , n do
8: result = G[ j](PV[S tart][t − 1], PV[S tart][t − 2]);
9: result = c[ j] × result;

10: py+ = result;
11: end for
12: PV[S tart][t] = py;
13: if (|PV[S tart][t] − v[S tart + t]| > Threshold) then
14: break;
15: end if
16: end for
17: FH[S tart] = t;
18: end while
19: lastS tart = t;
20: minFH = FH[S tart];
21: intminFHp = minFH;
22: for all t = 3, . . . , S tart do
23: if (minFH > FH[t]) then
24: minFHp = FH[t];
25: end if
26: end for
27: minFH = (minFHp < minFH)minFHp : minFH;
28: ME = MAE = 0; ▷ minFHp is the reasonable horizon for accuracy
29: for all t = 3, . . . ,minFH do
30: MAE+ = |v[t + S tart] − PV[S tart][t]|;
31: ME+ = (v[t + S tart] − PV[S tart][t]);
32: end for
33: MAE/ = minFH; ME/ = minFH;

return (MAE, ME, minFH)

3.7 OPTIMIZING COEFFICIENTS

We present a general algorithm to optimize coefficients in quasilinear recurrence equations (QREs) of various orders
for time series prediction. Our goal is to minimize the sum of absolute differences (SAD) between the predicted and actual
values, which is a robust loss function suited for time series with outliers or non-normal error distributions.

Quasilinear recurrence equations incorporate past values of a time series to predict future values, allowing for both
linear and non-linear dependencies. The model’s complexity and potential for capturing intricate patterns increase with
the order of the recurrence relation.
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Given a time series {vt}
N
t=1, a quasilinear recurrence equation of order n can be expressed as:

v̂t =

n∑
i=1

civt−i +

n∑
i=1

n∑
j=i

cn+( i
2)+ j−ivt−ivt− j

where v̂t is the predicted value at time t, and ci are the coefficients to be optimized.
The following algorithm outlines the process to optimize the coefficients of a QRE:
The iterative approach ensures that coefficients are adjusted to closely model the underlying patterns in the time

series while minimizing the impact of outliers or abnormal fluctuations. The use of SAD as a loss function enhances
the robustness of the model against outliers.

• Overfitting, especially in higher-order models, where the model might capture noise rather than the underlying data
pattern.

• Computational complexity increases with the order of the model, requiring more data to validate and stabilize the
predictions.

Algorithm 5 General GLDM Model for Optimizing Coefficients

1: Define model order n ∈ {1, 2, 3}
2: Initialize coefficients c1, c2, . . . , c n(n+3)

2

3: Define maximum iterations M and convergence threshold ϵ
4: Initialize S AD = ∞ (Sum of Absolute Differences)
5: while M > 0 and change in S AD > ϵ do
6: for each time point t from n + 1 to N do
7: Calculate predicted value v̂t:
8: v̂t ←

∑n
i=1 ci · vt−i +

∑n
i=1
∑n

j=i cn+( i
2)+ j−i · vt−i · vt− j

9: end for
10: Calculate new S AD:
11: S ADnew ←

∑N
t=n+1 |vt − v̂t |

12: if S ADnew < S AD then
13: S AD← S ADnew

14: Update coefficients c1, c2, . . . , c n(n+3)
2

to minimize S AD
15: end if
16: M ← M − 1
17: end while
18: Output the optimized coefficients and final S AD
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3.8 ALGORITHMIC APPROACH TO LOSS FUNCTION OPTIMIZATION

The GLDM algorithm implements a systematic process to minimize the loss function, quantifying the prediction error
for univariate time series data. The optimization’s objective is to find the optimal set of model parameters, denoted c, that
minimizes the loss, leading to the most accurate predictions.

The loss function is defined as:

L(c) =
1
T

T∑
t=1

(vt − v̂t(c))2, (29)

where L(c) represents the loss function, vt are the actual observed values, v̂t(c) is the predicted value based on the model
parameters c = {c1, c2, . . . , cn}, and T is the total number of observations. The model focuses on significant coefficients
within c that have the greatest impact on forecast accuracy. This focus is crucial for simplifying the model and ensuring
predictive reliability, especially in epidemiological studies.

The steps of the GLDM loss function optimization algorithm are outlined in Algorithm 6.

Algorithm 6 GLDM Loss Function Optimization

1: Initialize model parameters c = {c1, c2, . . . , cn} with small, random values.
2: Compute the initial loss L(c) using the squared error.
3: repeat
4: Calculate the gradient of the loss function ∇cL(c).
5: Update the parameters in the direction of steepest descent: c← c − α∇cL(c), where α is the learning rate.
6: Recompute the loss L(c) to check for improvement.
7: until convergence is achieved, indicated by ∥∇cL(c)∥ < ϵ or a maximum number of iterations is reached.
8: return the optimized parameters c.

The convergence of the algorithm is typically determined either by the gradient norm falling below a threshold ϵ, indi-
cating that a local minimum has been reached, or by reaching a predefined maximum number of iterations. This iterative
refinement is crucial for the GLDM model’s ability to adapt to new data and provide accurate forecasts, particularly for
epidemiological trends.

The simulations depicted in Figure 5 were executed using Python version 3.9.

FIGURE 5. A 3D surface plot visualizing the loss function L(c1, c2) for a first-order GLDM model, with the z-axis representing
the loss magnitude in relation to the coefficient values on the x and y axes.
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In the field of time series analysis, particularly within the domain of infectious disease modeling, the Generalized Least
Deviation Method (GLDM) serves as a robust approach for developing predictive models. A pivotal aspect of GLDM
involves understanding the influence of model coefficients on the accuracy of predictions. The relationship between these
coefficients and the predictive error is visualized in Figure 5, which depicts a three-dimensional surface plot for a first-
order GLDM model. The plot articulates how the loss magnitude, symbolized by L(c1, c2), varies with the coefficients c1
and c2.

The graphical representation demonstrates a parabolic surface where the trough signifies the most favorable combina-
tion of c1 and c2 that minimizes loss, thereby reducing prediction error. In a first-order GLDM model, these coefficients
are instrumental in determining the immediate past influence on subsequent forecasts.

Advancing to a second-order GLDM model, the complexity escalates as the number of coefficients increases to five,
encompassing c1 through c5. This progression allows for a more nuanced depiction of the past two observations’ impact,
inclusive of their interactive effects, on the forecasted value. The addition of these coefficients escalates the dimensionality
of the optimization endeavor, transforming the loss function into a more complex hypersurface within a multidimensional
space.

While a direct visualization of a five-dimensional hypersurface is beyond our three-dimensional perception, Figure 5
conceptualizes the loss function L(c1, c2, c3, c4, c5) for a second-order model by simulating the impact of altering coef-
ficients on the prediction error. The depth of color on the plot represents the magnitude of the loss, which is defined
as:

L(c) =
1
T

T∑
t=1

(vt − v̂t(c))2,

with darker shades symbolizing lower loss values. These regions correspond to the optimal coefficients where the model’s
predictions most closely align with observed data.

The predictive formula for the second-order GLDM model is:

v̂t = c1g1(vt−1) + c2g2(vt−2) + c3g3(v2
t−1) + c4g4(vt−1vt−2) + c5g5(v2

t−2) + ϵt,

where v̂t predicts the outcome, c = {c1, c2, c3, c4, c5} denotes the set of influential coefficients, g j embodies the functions
capturing relationships within the time series, and ϵt represents the stochastic error term. Identifying the most effective
coefficient combination is fundamental to diminishing prediction error, a concept elegantly illustrated by the contours in
the figure.

3.9 ERROR METRICS FOR MODELING DAILY COVID-19 CASES

The task of modeling daily COVID-19 cases requires rigorous mathematical and computational techniques, particularly
within the domain of time series analysis. The precision and accuracy of these models are critical for guiding effective
data-driven responses to the pandemic. To evaluate the performance of our predictive models, we utilize several key error
metrics, each offering insights into various aspects of model accuracy and prediction bias. This section explores essential
metrics such as Root Mean Square Error (RMSE), R-Squared (R2), Mean Absolute Percentage Error (MAPE), Mean
Absolute Error (MAE), Median Absolute Error, Mean Absolute Scaled Error (MASE), and Mean Bias Error (MBE).
These metrics provide a robust framework for assessing our models, helping to highlight their strengths and pinpoint
areas for improvement.

Understanding and applying these metrics is crucial for refining our predictive algorithms, thereby enhancing the
accuracy of our daily COVID-19 case predictions. This effort highlights the vital role of integrating mathematics and
computer science to tackle complex epidemiological challenges through advanced modeling techniques.

3.9.1. Root Mean Square Error (RMSE)
The RMSE is an essential metric for quantifying the accuracy of predictions, particularly useful in assessing how

closely a model’s predictions align with the actual observed numbers. It measures the average magnitude of errors between
the predicted daily COVID-19 case counts (v̂t) and the actual reported figures (vt). A lower RMSE value is indicative of
a model that more accurately forecasts daily COVID-19 cases, thereby highlighting the model’s predictive quality and
reliability. This metric is indispensable for the iterative process of model refinement, aiming to minimize prediction errors
and enhance the precision of daily COVID-19 case projections. The formula for calculating RMSE is provided as:

RMSE =

√√√
1
T

T∑
t=1

(vt − v̂t)2 (30)
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where vt represents the actual reported daily COVID-19 cases, v̂t denotes the cases predicted by the model, and T is the
total count of observations used in the model.

3.9.2. R-Squared (R2)
The R2 metric quantifies the fit of our predictive model to the observed daily COVID-19 case data. It calculates the

proportion of variance in daily case numbers that can be predicted from our model, thereby offering insight into its
explanatory power. The formula for R2 is as follows:

R2 = 1 −
∑T

t=1(vt − v̂t)2∑T
t=1(vt − v̄)2

(31)

where vt represents the actual daily case numbers, v̂t denotes the predicted case numbers by our model, v̄ is the average
of observed cases, and T is the total number of observed days. This metric is crucial for assessing the reliability of our
predictions, with values closer to 1 indicating a model that accurately reflects observed trends in COVID-19 case numbers.

3.9.3. Mean Absolute Percentage Error (MAPE)
MAPE offers a standardized measure of prediction error expressed as a percentage, facilitating an intuitive under-

standing of model accuracy in forecasting daily COVID-19 cases. This metric is particularly valuable for comparing
the performance of different models or for assessing improvement in model accuracy over time. By expressing errors
in percentage terms, MAPE allows for a relative error comparison across datasets of varying scales. The formula for
calculating MAPE, which reflects the average magnitude of errors between predicted and actual case numbers as a
proportion of actual values, is given by:

MAPE =
100%

T

T∑
t=1

∣∣∣∣∣vt − v̂t

vt

∣∣∣∣∣ (32)

where vt represents the actual reported number of daily COVID-19 cases, v̂t denotes the predicted case numbers, and T is
the total number of observations. A lower MAPE value indicates a model with higher predictive accuracy, highlighting its
effectiveness in closely estimating the real-world occurrence of daily COVID-19 cases.

3.9.4. Mean Absolute Error (MAE)
MAE is a crucial metric for evaluating the accuracy of predictions related to daily COVID-19 case numbers. It

quantifies the average error magnitude across all predictions, disregarding the direction of these errors. This simplicity
makes MAE particularly useful for understanding the general prediction error scale in forecasting daily COVID-19 cases,
as it provides a direct average of absolute errors. The formula for MAE is given as follows, where lower values signify
more accurate predictions:

MAE =
1
T

T∑
t=1

|vt − v̂t | (33)

In this formula, vt denotes the actual reported number of daily COVID-19 cases, v̂t represents the predicted cases for the
same day, and T is the total number of observed days. An effective model for predicting daily COVID-19 cases aims to
minimize the MAE, reflecting closer alignment between the model’s predictions and the observed case data.

3.9.5. Mean Error (ME)
ME provides a straightforward measure of the average bias in predictions of daily COVID-19 case numbers. Unlike

MAE or MSE, ME takes into account the direction of the prediction errors, thus indicating whether the model tends to
overestimate or underestimate the actual case counts. This metric is crucial for identifying systematic bias in predictive
models, ensuring that forecasts neither consistently overshoot nor undershoot the real data. The formula for calculating
ME is:

ME =
1
T

T∑
t=1

(vt − v̂t) (34)

Here, vt represents the actual reported number of daily COVID-19 cases, v̂t is the number of cases predicted by the model
for the corresponding day, and T is the total number of days included in the analysis. Positive ME values indicate an
average overestimation of cases by the model, whereas negative values point to underestimation. The goal is to adjust the
model to achieve an ME as close to zero as possible, indicating unbiased predictions.
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4. RESULTS

The application of Generalized Least Deviation Method (GLDM) models to analyze COVID-19 infection and mortality
data has provided invaluable insights into the dynamic nature of the pandemic across various regions. This section provides
a focused analysis on the Samara Region and Russia, shedding light on the predictive accuracy and utility of GLDM
models in these specific contexts.

Table 1 summarizes the length of the data collection periods for the Samara Region and Russia, which are critical for
the models’ analyses.

Table 1. Data collection length for the Samara Region and Russia.
No. Region Length
1 Samara Region 1003
2 Russia 882

Table 2 outlines the GLDM model’s First-order coefficients for the Samara Region, with c1 indicating a primary positive
effect, and c2 a represent minor adjustments within the model.

Table 2. First order GLDM Model Coefficients for COVID-19 Infection Cases in Samara Region

Coefficient Value
c1 1.0071
c2 -1.2486 ×10−5

Table 3 outlines the GLDM model’s second-order coefficients for the Samara Region, with c1 indicating a primary
positive effect, and c2 a significant negative effect on the infection trend. The coefficients c3 to c5 represent minor
adjustments within the model.

Table 3. Second Order GLDM Model Coefficients for COVID-19 Infection Cases in Samara Region
Coefficient Value
c1 1.2573
c2 -0.2455
c3 0.0002
c4 0.0001
c5 -0.0003

Figures 6 and 7 compare the actual COVID-19 infection data with first and second-order GLDM model projections for
the Samara region, illustrating the models’ close fit to the actual infection trends.
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FIGURE 6. Comparing original and GLDM Model first-order predictions for COVID-19 cases in the Samara
region: Time Series Analysis

FIGURE 7. Comparing original and GLDM Model second-order predictions for COVID-19 cases in the Samara
region: Time Series Analysis

Table 4 displays the first-order GLDM model coefficients for death cases in Russia, where c1 equals 1, indicating a
direct correlation with previous values, and c2 is 0, showing no additional effect.
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Table 4. First Order GLDM Model Coefficients for Death Cases in Russia

Coefficient Value

c1 1.0000
c2 0.0000

Table 5 presents coefficients for a second-order GLDM model, with c1 suggesting a significant effect on the death
cases’ trend, and c2 showing additional influence. The remaining coefficients indicate minor adjustments to the model’s
predictions for death cases in Russia.

Table 5. Second Order GLDM Model Coefficients for Death Cases in Russia

Coefficient Value

c1 0.7265
c2 0.2610
c3 0.0020
c4 0.0016
c5 -0.0036

Table 6 lists the third-order GLDM coefficients, with their values shaping the death case trend in Russia.

Table 6. Third Order GLDM Model Coefficients for Death Cases in Russia

Coefficient Value

c1 0.5970
c2 -0.3694
c3 0.7396
c4 0.0083
c5 0.0101
c6 -0.0009
c7 -0.0185
c8 0.0010
c9 0.0000

Figures 8, 9, and 10 compare original COVID-19 death case data with first, second, and third-order GLDM model
predictions for Russia, illustrating the model’s fit.
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FIGURE 8. Time Series: COVID-19 death cases in Russia with the GLDM Model (first order)

FIGURE 9. Time Series: COVID-19 death cases in Russia with the GLDM Model (Second order)
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FIGURE 10. Time Series: COVID-19 death cases in Russia with the GLDM Model (third order)

The application of the Generalized Least Deviation Method (GLDM) models to COVID-19 infection cases in the
Samara Region and mortality cases in Russia provides insightful analysis into the patterns of the pandemic’s spread and
impact. For the Samara Region, the performance metrics of the GLDM models reveal significant insights: the first-order
model reported a Root Mean Square Error (RMSE) of 69.81, while the second-order model demonstrated improved
accuracy with a reduced RMSE of 58.20, reflecting its enhanced capability in capturing the transmission dynamics of the
virus. These findings are elaborated in Table 7

In the case of Russia’s mortality data, both first and second-order GLDM models yielded close RMSE values of 33.78
and 33.31, respectively, suggesting their effectiveness in modeling death cases. However, the third-order model’s higher
RMSE of 41.43 may indicate overfitting, revealing that increased model complexity does not necessarily enhance forecast
accuracy.

Comparative figures of model predictions against actual data for the Samara Region and Russia illustrate the GLDM
models’ remarkable fidelity in mirroring real-world occurrences. Such analytical depth affirms the critical role of these
models in navigating the pandemic, providing a solid foundation for informed decision-making in public health strategy
and resource distribution.

Detailed within Table 7 are the models’ performance metrics, offering a nuanced view of their effectiveness through
various statistical measures, including RMSE, R-squared, and others, for both the Samara Region and Russia.

Table 7. Error Matrix for COVID-19 Infection Death Cases in Russia and Specific Regions

Region Order RMSE R-
squared

MAPE MAE MSE ME

Samara Region First 69.81 0.9927 9.18 27.99 4872.80 6.99
Second 58.20 0.9943 9.36 23.68 3387.41 -3.48

Russia First 33.78 0.9896 11.12 22.24 1141.25 0.074
Second 33.31 0.9898 10.96 22.22 1109.29 0.43
Third 41.43 0.9843 13.47 29.37 1716.66 -2.79

Utilizing the Generalized Least Deviation Method (GLDM), Figures 12 and 11 display the fidelity of COVID-19 case
and death rate modeling for the Samara Region and Russia, respectively. The radar diagrams underscore the method’s
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robustness in delineating the pandemic’s patterns. Importantly, Figure 13 details the Sum of Absolute Differences (SAD),
a loss function metric, to compare model orders. It reveals the superior accuracy of the second-order GLDM model,
which registers a lower SAD value, denoting a more precise fit for the observed data in both regions. This suite of figures
collectively accentuates the effectiveness of the second-order GLDM model, particularly in its loss function minimization,
affirming its enhanced predictive quality across various epidemiological contexts.

In Figures 11 and 12, radar charts are presented, depicting the performance metrics of various algorithms. It is observed
that the second order of GLDM outperforms the first and third orders for forecasting death cases in Russia. Additionally,
in the context of COVID-19 infection cases in Samara, the second order exhibits superior performance over the first order.

FIGURE 11. Radar Diagrams for Goodness of Fit of
GLDM Models for deaths COVID-19 Cases in Russia

FIGURE 12. Radar Diagrams for Goodness of Fit of
GLDM Models for COVID-19 Cases in Samara Region

A summary analysis of the Sum of Absolute Differences (SAD) for the Samara Region with respect to COVID-19
infection cases and for Russia with respect to COVID-19 death cases by model order is presented in Table 8. This analysis
provides insight into the performance of different GLDM model orders. In the Samara Region, the Second Order model
shows a lower SAD compared to the First Order model, suggesting a higher accuracy in modeling the infection trend.
Conversely, in Russia, the Second Order model exhibits only a slight improvement in SAD over the First Order model, and
the Third Order model displays a higher SAD, indicating that more complex models do not always yield better predictive
performance. The table quantifies the accuracy of the GLDM models, allowing for a straightforward comparison of their
effectiveness in different contexts.

Table 8. Sum of Absolute Differences for various regions by model order.

Region Model Order Sum of Absolute Differences

Samara Region First Order 28044.96
Second Order 23704.61

Russia First Order 19591.00
Second Order 19554.24
Third Order 23238.35
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FIGURE 13. Sum of Absolute Differences (Loss Function) by Region and Model Order

5. COVID-19 QUASILINEAR RECURRENCE EQUATIONS

In the context of GLDM models, the order of the model corresponds to the number of previous time steps (lags)
considered to predict the current value. The coefficients ci are parameters that quantify the influence of each term in the
model.

The first-order model takes into account only the immediate previous value to predict the current value. The equation
is:

v̂t = c1 × vt−1 + (c2 × v2
t−1) (35)

where v̂t is the predicted value at time t, vt−1 is the actual value at time t − 1, c1 is the coefficient for the previous value,
and c2 is the constant term or intercept of the model.

The second-order model includes not only the immediate previous value but also the value from two time steps ago.
Additionally, it may consider interactions and non-linear effects of these values:

v̂t = (c1 × vt−1) + (c2 × vt−2)

+ (c3 × v2
t−1) + (c4 × vt−1 · vt−2)

+ (c5 × v2
t−2)

(36)

Here, c3 represents the coefficient for the squared term of the previous value, c4 is the coefficient for the interaction term,
and c5 is the coefficient for the squared term of the value from two time steps ago.

Extending to the third-order model, we include yet another time step back and additional interaction terms, enhancing
the model’s complexity and potential accuracy:
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v̂t = (c1 × vt−1) + (c2 × vt−2) + (c3 × vt−3)

+ (c4 × v2
t−1) + (c5 × vt−1 · vt−2) + (c6 × v2

t−2)
+ (c7 × vt−1 · vt−3) + (c8 × vt−2 · vt−3)

+ (c9 × v2
t−3)

(37)

This model includes terms up to the third previous time step and their interactions. For example, c7 measures the
interaction between the first and third previous values, while c9 is the coefficient for the square of the third previous value.

Each of these models increases in complexity as the order rises, which may improve prediction accuracy but also raises
the risk of overfitting, especially when the number of parameters becomes large relative to the amount of available data.

5.1 SAMARA REGION

The coefficients in the second-order GLDM equation are crucial for understanding the influence of past COVID-19
infection cases on future predictions. In our model for the Samara Region:

v̂t = (1.2573 × vt−1) + (−0.2455 × vt−2) + (0.0002 × v2
t−1) + (0.0001 × vt−1 · vt−2) + (−0.0003 × v2

t−2), (38)

the coefficient c1 = 1.2573 is positive, indicating a direct relationship between the previous day’s infection cases vt−1
and the predicted value v̂t. This suggests that an increase in cases from the previous day contributes positively to the
forecast for the current day.

Conversely, the coefficient c2 = −0.2455 is negative, which implies an inverse relationship for the infection cases
two days prior vt−2. A higher number of cases two days ago is associated with a lower prediction value for today, after
controlling for the effect of the previous day. This may reflect factors such as interventions that were put in place after a
spike in cases, or natural fluctuations in the spread of the virus.

The additional coefficients c3 to c5 further refine the model by capturing minor adjustments to the infection trend based
on interactions and squared terms of the data from one and two days ago. This reflects the complexity of the disease
transmission dynamics and allows the model to account for subtle changes in the data over time.

5.2 RUSSIA

In the context of GLDM models for epidemiological data, the coefficients signify how changes in past data points
influence the forecasted value. For the COVID-19 death cases in Russia, our simplified second-order model uses five
significant coefficients to capture the trend:

v̂t = (0.7265 × vt−1) + (0.2610 × vt−2) + (0.0020 × v2
t−1) + (0.0016 × vt−1 · vt−2) + (−0.0036 × v2

t−2), (39)

where v̂t represents the predicted number of deaths at time t. Here, both coefficients are positive, which indicates that
higher numbers of deaths in the past two days (vt−1 and vt−2) are associated with a higher predicted number of deaths. The
coefficient c1 = 0.7265 suggests a stronger influence of the previous day’s death count on the current prediction, while
c2 = 0.2610 suggests a slightly less, but still positive, influence from two days prior.

These positive coefficients reflect the persistence of the event; in this case, it could be indicative of continued transmis-
sion of the virus or other factors contributing to a sustained number of deaths. The absence of a negative coefficient means
that there was no detected inverse relationship in the time frame considered for this model.

6. COMPARATIVE ANALYSIS AND SUPERIOR PERFORMANCE OF GLDM
SECOND-ORDER MODEL FOR COVID-19 FORECASTING

The performance of various models for forecasting COVID-19 infection cases in the Samara Region and COVID-19
deaths in the Russian Federation is critically compared in Tables 9 and 10, focusing on two key error metrics: R-Squared
(R²) and Mean Absolute Percentage Error (MAPE). These tables provide a comprehensive overview of the accuracy
and reliability of each model, underscoring the superior efficacy of the Generalized Least Deviation Method (GLDM) in
comparison to other approaches.

Mean Absolute Percentage Error (MAPE) is a critical metric for evaluating COVID-19 forecasting models due to its
mathematical and statistical properties. MAPE is defined as:
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MAPE =
100%

n

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣
where At represents the actual value and Ft represents the forecasted value at time t. This metric provides a percentage

error, making it easily interpretable and facilitating intuitive understanding for stakeholders.
Statistically, MAPE adjusts for the scale of the data, allowing for consistent evaluation across different regions and time

periods, which is particularly important given the heterogeneous nature of COVID-19 case numbers. MAPE’s sensitivity
to large errors (|At − Ft |) ensures that significant deviations in model predictions are effectively highlighted, providing a
clear indication of model reliability.

By focusing on absolute percentage errors, MAPE mitigates the impact of outliers compared to squared error metrics
such as Mean Squared Error (MSE), leading to a more robust assessment. This property is vital for accurate comparison
between models and for ensuring that forecasts are reliable for public health planning, resource allocation, and policy-
making.

The relative error measurement inherent in MAPE is particularly suited for dynamic and rapidly changing datasets,
such as those encountered during the COVID-19 pandemic. Thus, MAPE is indispensable for evaluating the performance
of predictive models in capturing the true trends and fluctuations of COVID-19 cases and deaths.

Table 9 details the performance of different models for COVID-19 infection cases in the Samara Region. The GLDM
second-order model exhibits exceptional performance, demonstrated by its high R² value of 0.9943 and a notably low
MAPE of 9.36%. This performance is particularly significant when compared to other models, such as the MLP model,
which has an R² of 0.0814 and a MAPE of 197.1749%, and the SVM model, with an R² of 0.4098 and a MAPE
of 12.5884%. The Auto ARIMA model and its hybrid variants also perform well, with R² values around 0.9956 and
MAPEs close to 10%, but they do not surpass the precision of the GLDM second-order model. Similarly, the Exponential
Smoothing model and the BATS and TBATS models, with R² values of approximately 0.9940 and MAPEs slightly above
10%, and the Prophet model, which has an R² of 0.6345 and a significantly higher MAPE of 179.7204%, also fall short in
comparison. This illustrates the robustness of the GLDM second-order model in providing precise and reliable predictions
for COVID-19 infection cases in the Samara Region.

The superior performance of the GLDM second-order model can be attributed to several mathematical advantages.
Firstly, the model’s ability to incorporate higher-order terms and nonlinearity enables it to capture complex, dynamic
patterns and dependencies within the data that simpler models may overlook. Specifically, the GLDM second-order model
for COVID-19 infection cases in the Samara Region is characterized by coefficients c1 = 1.2573, c2 = −0.2455, c3 =

0.0002, c4 = 0.0001, and c5 = −0.0003. This set of coefficients allows the model to effectively capture the intricate
dependencies and interactions between past infection rates. The GLDM’s rigorous optimization process, which focuses
on minimizing deviations between observed and predicted values, further enhances its predictive accuracy and robustness.
Notably, the use of an arctangent-based loss function minimizes the impact of outliers, leading to more stable and reliable
forecasts. Additionally, the GLDM’s use of quasilinear recurrence equations allows for a more flexible and adaptable
modeling approach, which is particularly beneficial for capturing the temporal dependencies and nonlinearities inherent
in COVID-19 infection data.

Table 10 details the performance of different models for COVID-19 deaths in the Russian Federation. The GLDM
second-order model demonstrates superior performance, evidenced by its high R² value of 0.9898 and a notably low
MAPE of 10.96%. This performance is remarkable when compared to other models, such as the MLP model, which
has an R² of 0.0446 and a MAPE of 167.1630%, and the SVM model, which shows an R² of 0.9742 and a MAPE of
17.3852%. The Auto ARIMA model and its hybrid variants also perform well, with R² values around 0.9917 and MAPEs
just above 11%, but they do not surpass the accuracy of the GLDM second-order model. Similarly, the BATS and TBATS
models, both with R² values of 0.9921 and MAPEs of 11.0584%, and the Prophet model, which has an R² of 0.9746 and
a significantly higher MAPE of 53.7971%, also fall short in comparison. This illustrates the robustness of the GLDM
second-order model in providing precise and reliable predictions for COVID-19 deaths in the region.

The mathematical advantages of the GLDM second-order model extend beyond its ability to incorporate higher-order
terms. Its optimization framework, which strategically minimizes a well-defined loss function through the use of the
arctangent, enhances the model’s ability to adapt to new data and maintain high accuracy. The inclusion of second-order
terms is crucial for capturing the complexities and nuances of time series data, making the GLDM particularly effective
for modeling the nonlinear and stochastic nature of COVID-19 dynamics. This advanced methodological approach allows
the GLDM second-order model to outperform other models, making it a critical tool for public health planning and
intervention.

In summary, the GLDM second-order model not only demonstrates superior accuracy and reliability in forecasting
COVID-19 infection cases in the Samara Region but also excels in predicting COVID-19 deaths in the Russian Federation,

468



Mostafa Abotaleb, Iraqi Journal for Computer Science and Mathematics, Vol. 5 No. 3 (2024) p. 441-472

outperforming a range of other predictive models. Its advanced methodological approach, which incorporates higher-order
terms and robust optimization techniques, allows it to capture complex patterns and dependencies with greater precision.
These optimized performance metrics make the GLDM second-order model an indispensable tool in the ongoing efforts
to model and understand the dynamics of the COVID-19 pandemic, providing critical insights for public health strategies
and interventions.

Table 9. Error Metrics (R-Squared and MAPE) for Various Models for COVID-19 Infection Cases in Samara Region

Model R-Squared MAPE (%)

MLP model 0.0814 197.1749
SVM model 0.4098 12.5884
Auto ARIMA model 0.9956 9.7693
Exponential Smoothing model 0.9946 9.5721
BATS model 0.9940 10.1551
TBATS model 0.9940 10.1551
Prophet model 0.6345 179.7204
Hybrid autoARIMA+ES 0.9955 10.8418
Hybrid autoARIMA+Polynomial 0.9956 9.7832
GLDM Second Order 0.9943 9.3600

Table 10. Error Metrics (R-Squared and MAPE) for Various Models for COVID-19 Deaths in Russian Federation

Model R-Squared MAPE (%)

MLP model 0.0446 167.1630
SVM model 0.9742 17.3852
Auto ARIMA model 0.9917 11.0454
Exponential Smoothing model 0.9898 11.1647
BATS model 0.9921 11.0584
TBATS model 0.9921 11.0584
Prophet model 0.9746 53.7971
Hybrid autoARIMA+ES 0.9915 11.2055
Hybrid autoARIMA+Polynomial 0.9917 11.0749
GLDM Second Order 0.9898 10.9600

7. DISCUSSION
This study presented an advanced algorithm based on the Generalized Least Deviation Method (GLDM), aimed at

improving the predictive accuracy of COVID-19 time series data. The findings from the application of this algorithm
demonstrate a marked enhancement in forecasting performance, which can be primarily attributed to the optimization of
a specially designed loss function and the utilization of second-order model dynamics.

7.1 MATHEMATICAL FORMULATION OF GLDM

The GLDM algorithm is formulated to minimize a loss function L(c) defined as:

L(c) =
T∑

t=1

(vt − v̂t(c))2 ,

where vt represents the observed data at time t, v̂t(c) is the predicted value, and c are the coefficients optimizing the model.

7.2 INCORPORATION OF SECOND-ORDER DYNAMICS

The model incorporates second-order dynamics through the equation:

v̂t = c1 f1(vt−1) + c2 f2(vt−2) + . . . + cn fn(vt−n) + δt,

where fi are functions modeling the relationship within the data, capturing complex patterns inherent in the COVID-19
time series data.
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8. CONCLUSION
In summary, the second-order GLDM models applied to COVID-19 data from the Samara Region and Russia have

provided valuable insights into the dynamics of infection cases and death counts, respectively.
For the Samara Region, the coefficients in the GLDM equation reveal the intricate relationship between past infection

cases and future predictions. The positive coefficient c1 = 1.2573 signifies a direct relationship with the previous day’s
infection cases (vt−1), while the negative coefficient c2 = −0.2455 indicates an inverse relationship with infection cases
two days prior (vt−2). Additionally, the supplementary coefficients c3 to c5 capture minor adjustments to the infection
trend based on interactions and squared terms of the data from one and two days ago. Together, these coefficients refine
the model, enabling it to account for subtle changes in the infection data over time.

Similarly, for Russia, the GLDM model for COVID-19 death cases reveals significant coefficients that influence the
prediction accuracy. The positive coefficients c1 = 0.7265 and c2 = 0.2610 highlight the persistent influence of the
previous day’s death count and deaths from two days prior, respectively. Additionally, the coefficients c3 to c5 capture
additional nuances and adjustments to the death trend based on interactions and squared terms of the data from one and
two days ago.

In summary, our application of the Generalized Least Deviation Method (GLDM) to the univariate time series data
of COVID-19 has yielded predictive insights with significant accuracy. By carefully calibrating the model to emphasize
the most influential coefficients, we have optimized the loss function to achieve an effective balance between model
complexity and predictive capability. Our results demonstrate that the simplified second-order model, with its significant
coefficients, provides a robust predictive framework for the time series data under study. The minimized loss function,
which is central to the efficiency of the GLDM algorithm, indicates that our model’s refinement process successfully en-
hanced its forecasting accuracy. This outcome not only validates the model’s application but also reinforces the importance
of precision in the selection of model parameters for epidemic tracking.

Overall, the absence of negative coefficients in both models suggests no detected inverse relationships within the
considered timeframe, indicating the persistence of the observed trends. These findings underscore the importance of
GLDM models in capturing the complex dynamics of infectious disease transmission and death counts, providing valuable
insights for epidemic tracking and public health interventions.

9. FUTURE RESEARCH
Future research should extend the scope of current modeling efforts by incorporating multivariate time series data,

which could unveil more complex interdependencies and potential causalities within the spread of COVID-19. Further
development of the GLDM algorithm to adaptively select significant coefficients could yield a more dynamic model,
responsive to shifts in data trends. Additionally, exploring the integration of other loss functions might reveal alternative
methods to refine the predictive accuracy of such epidemiological models. Studies could also examine the robustness of
the model in other epidemiological scenarios, potentially offering a versatile tool for public health forecasting. Advanced
statistical techniques, such as machine learning algorithms, could be employed to assess the GLDM’s performance against
other predictive models, thus contributing to the broader compendium of epidemiological modeling literature.
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