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1. INTRODUCTION 

 The resource requirements of both businesses and individual users in recent times have exhibited dynamic trends. 

Cloud computing has emerged as a convenient solution to meet this growing demand. Cloud computing provides access 

to computing resources and services via the internet. Instead of owning and managing physical infrastructure, users can 

access virtual instances of resources, including storage, servers, databases, software, and networking, from various CSPs 

[1]. The resources housed in the data centers can be rapidly provisioned and de-provisioned to meet these dynamic 

requirements. By leveraging cloud services like Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and 

Software as a Service (SaaS), cloud users can efficiently host, deploy, and operate a diverse range of applications in a 

dynamic manner.  

 In any service-based computing environment, performance pertains to the effectiveness of a system or application 

in managing user tasks and adhering to SLA terms. The SLA outlines performance measures, specifically the QoS, to be 

delivered by the CSP to the cloud users [2]. One of the crucial factors behind the attainment of the SLA and QoS is the 

resource management technique. Cloud resource management covers activities like allocating, monitoring, and 

optimizing resources such as VMs, storage, and networking utilities to meet various application needs. In this context, 

cloud resource management tasks such as virtualization, scheduling, load balancing, VM migration, and VM 

consolidation become essential. These techniques work together to improve resource usage, the effective delivery of 

cloud services, and performance. However, managing cloud resources and achieving optimal cloud service delivery pose 

widespread challenges. These challenges stem from various factors, such as the dynamic nature of user demand and 

constraints dictated by measures listed in the SLA, specifically the attainment of QoS. Other key challenges include 

resource contention, network latency, scalability, virtualization overheads, continuous monitoring and optimization, etc.  

Scheduling and load balancing are fundamental techniques for optimizing performance by achieving QoS 

metrics like makespan reduction, resource utilization, energy efficiency, adaptability, and cost reduction in cloud 

environments. Scheduling involves making decisions about when (time) and where (host or VM) to execute the cloudlet 

or task. In general, scheduling involves two types: virtual machine scheduling and cloudlet scheduling. Virtual machine 

scheduling maps VMs to hosts, while cloudlet scheduling maps cloudlets to VMs. The cloudlet scheduling algorithm 

performs resource matching by analyzing the resource requirements of the cloudlets and the configurations of the VMs. 
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The resource requirements of a cloudlet typically include the number of processing elements (CPU cores), memory 

(RAM), storage, bandwidth, and other relevant factors. Similarly, the configuration of VMs encompasses attributes such 

as CPU capacity, available memory, disk space, network bandwidth, and many other relevant parameters. By comparing 

the resource requirements of cloudlets with the capacities of VMs, the scheduling algorithm identifies the most suitable 

VM for executing each cloudlet.  

Load balancing focuses on distributing user or network workloads evenly across the available hosts or VMs 

during the allocation or scheduling phase to avoid bottlenecks, overutilization, and underutilization of resources. Both 

are complementary strategies that work together to ensure that cloudlets are allocated to VMs in a way that optimizes 

performance and solves many of the aforementioned issues [3]. Distributed environments manage load distribution using 

static and dynamic load balancing algorithms. Static algorithms rely on predetermined rules based on statistical data 

about resources like hosts and VMs. These rules consider characteristics like processing speed, number of cores, and 

memory before workload allocation. They are well-suited for predictable workloads with consistent traffic patterns. 

Dynamic load balancing algorithms, on the other hand, adapt to real-time workloads. They handle fluctuating traffic 

patterns by continuously assessing the current state of the system, including CPU usage, memory availability, and other 

metrics. This allows them to adjust task assignments dynamically to maintain optimal resource utilization [4].  

Apart from scheduling and load balancing, other techniques involved in efficient resource management are 

virtualization, virtual machine migration, and consolidation. Virtualization is the core technology that enables the   on-

demand and dynamic management of cloud resources. The two main approaches to achieving virtualization are hardware 

and software virtualization. The foundation of hardware virtualization is the hypervisor, which virtualizes the entire 

hardware layer of a machine and creates virtual machines. Each VM runs its own operating system, providing a high 

degree of isolation and flexibility. Software virtualization, on the other hand, virtualizes the operating system layer and 

creates containers. Containers share the host machine's operating system kernel but isolate the application and its 

dependencies. Containerization tools like Docker manage container creation. Other types of resource virtualization 

include server, storage, network, desktop, application, and data virtualization. VM migration involves moving a running 

VM from one physical machine to another without interrupting its operation. VM consolidation groups VMs on fewer 

physical machines to free up underutilized machines. VM consolidation is often used in conjunction with VM migration. 

Both are done during load balancing and server maintenance or to improve resource utilization, cost reduction, energy 

consumption, disaster recovery, downtime minimization, and other critical benefits. Figure 1 illustrates cloudlet or user 

task scheduling and execution. 

The clients are the end-users or applications of the system, who submit the cloudlets to the datacenter broker for 

execution. The datacenter broker acts as an intermediary between the clients and the datacenters. It manages operations 

like receiving cloudlets from clients, placing them in a queue, allocating resources in the datacenter, and scheduling them 

to be executed on the VMs. The datacenter broker matches client requirements or demands with suitable datacenters, 

negotiates SLAs, and manages the provisioning of datacenter resources. Hosts are physical machines that run VMs. VMs 

are self-contained software environments that run on a host and provide a platform for running cloudlets. Cloudlets are 

small pieces of code or user tasks submitted by clients. The cloudlet queue is where cloudlets are stored before they are 

assigned to a VM. The datacenter is the physical location where the resources reside. The CIS holds a repository of 

information about available resources, services, and configurations within the cloud environment. The load balancer 

distributes incoming traffic among the different VMs in the datacenter. The datacenter broker selects the VM and cloudlet 

scheduling policies (VMScheduler SpaceShared, VMScheduler TimeShared, CloudletScheduler SpaceShared, 

CloudletScheduler TimeShared, etc.). Scheduling policies are the guidelines or principles that govern the overall 

scheduling approach. Scheduling algorithms are a set of well-defined steps that determine the order in which cloudlets 

are to be mapped and processed. The datacenter broker maps the VMs to the hosts and cloudlets to the VMs based on the 

selected scheduling policies and algorithms. The VM scheduler policies define the rules for allocating VMs within the 

physical hosts, optimizing resource usage and energy efficiency, etc. VM scheduler algorithms implement these policies, 

analyzing VM and host characteristics to determine VM placement. Cloudlet scheduler policies govern cloudlet 

assignment to the VMs based on the cloudlet requirements and objectives, like makespan reduction, increased resource 

utilization, load balancing, etc. Cloudlet scheduler algorithms implement these policies to execute the cloudlets in the 

VMs.  
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Figure 1: Typical Cloudlet Scheduling Model 

Cloudlet scheduling is essential for optimizing cloud performance, but it faces challenges due to the heterogeneity 

among cloudlets and VMs. Heterogeneity refers to the varying characteristics of cloudlets and VMs in terms of processing 

speed (MIPS), cloudlet size (MI), memory, bandwidth, etc. Most scheduling algorithms fail to effectively address this 

heterogeneity, which can negatively impact cloud system performance and efficiency. The motivation for this research 

lies in the need to optimize cloud performance, often hindered by the neglect of heterogeneity in existing scheduling 

algorithms. This paper proposes the Adaptive Heterogeneity Index Cloudlet Scheduler (AHICS) algorithm as a solution. 

AHICS is based on the Variance Managed Heuristic Scheduler (VMHS) and MaxMin sub-schedulers. By considering 

the combined heterogeneity index (CHetInx), AHICS adaptively selects either VMHS or MaxMin, employing VMHS in 

low heterogeneity scenarios and MaxMin in high heterogeneity scenarios. The AHICS algorithm aims to improve 

resource allocation, enhance makespan, VM utilization, load balance, reduce the deviation of completion time among the 

VMs, and address other heterogeneity-related challenges. AHICS significantly outperforms existing heuristic algorithms 

like MinMin, TASA, HAMM, PTFR, and RSSM. The contributions of this AHICS scheduler are as follows: 

▪ Makespan reduction: The AHICS scheduler effectively reduces the overall completion time or makespan of 

the schedule by considering the heterogeneity, leading to improved cloudlet processing time. 

▪ Improved VM utilization: By carefully matching cloudlets and VMs based on their characteristics, AHICS 

enhances VM utilization, reducing resource wastage and improving the cost-efficiency. 

▪ Minimized load imbalance: AHICS evenly distributes the cloudlets among VMs, preventing any single VM 

from being overloaded while others remains idle or underloaded. This ensures efficient resource utilization and 

prevents system bottlenecks. 

▪ Reduced completion time deviation: The scheduler strives to minimize the variation in completion time among 

the VMs, leading to more predictable and consistent performance, which is often desirable in cloud 

environments. 

This paper is organized into seven standard sections. Section 1 introduces the foundational theory for scheduling and 

load balancing in cloud environments, the underlying motivations, and the contribution of this paper. Section 2 examines 

existing similar research works. Section 3, the framework and formulation section, provides the system model, problem 

statement, problem formulation, objectives, and the computational formulas behind the proposed work. Section 4 presents 

the proposed algorithms, namely VMHS, MaxMin, and AHICS schedulers, along with their time complexity analyses. 

Section 5 explains the experimental section. Section 6 analyzes the results and provides a discussion on the outcomes of 

the experimentation. Finally, Section 7 presents the paper's conclusion. 
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2. RELATED RESEARCH WORK 

The most common challenges in cloud computing include makespan reduction, QoS, resource, energy optimization, 

and fault tolerance. Several research studies documented in the literature propose scheduling algorithms to address these 

issues. These formulations are generally classified as heuristic scheduling, meta-heuristic scheduling, and hybrid 

scheduling algorithms capable of optimizing either a single or multiple objective(s). 

Furthermore, cloudlets can be broadly categorized into two main types: dependent cloudlets and independent 

cloudlets. Independent cloudlets are self-sufficient and do not require any specific order or interaction with other cloudlets 

to execute. They can be processed in any order without impacting the outcome. This makes them ideal for parallel 

processing tasks that can be broken down into independent units. Dependent cloudlets, on the other hand, rely on the 

successful completion of other cloudlets before they start execution. They have a defined order of execution and might 

require data or results from previously executed cloudlets. They are similar to workflows where the cloudlets need to be 

scheduled in a specific sequence to ensure correct execution.  

Section 2.1 reviews heuristic, meta-heuristic, and hybrid cloudlet scheduling algorithms. Section 2.2 then reviews 

related research work about load balancing. This review focuses on papers concerning reducing makespan, improving 

resource utilization, and achieving load balancing. Table 1 enumerates the various abbreviations and expansions used in 

this paper. 

 

2.1 Review of Cloudlet Scheduling Algorithms 

Effective cloudlet-to-VM mapping and load balancing is crucial for optimizing performance in cloud environments. 

This review explores the existing techniques, their strengths, weaknesses, and contributions to the field. HEPGA proposed 

by H. Mikram et al., is a hybrid algorithm that combines HEFT, PSO, and GA algorithms. This workflow-based HEPGA 

algorithm aims to minimize makespan, cost, and latency while maximizing resource utilization. The HEFT algorithm 

provides cloudlet priority, PSO utilizes Levy's distribution for exploration to find solutions, and the genetic algorithm 

generates refined solutions using selection, mutation, and crossover operations. The algorithm performs better than GA, 

HGA, and PSO algorithms. The performance may deteriorate as workflows become larger and more complex. Incorrect 

parameter settings could result in suboptimal solutions [6]. The adaptive cloudlet PSO-ACO cloudlet scheduling 

algorithm, proposed by N. R. Sabat et al., aims to reduce makespan and cost. The algorithm also strives to find better 

fitness values by achieving reduced completion time and waiting time. PSO is used to generate the initial solution, and 

ACO refines the solution by optimizing cloudlet distribution to VMs through pheromone distribution. This approach 

outperforms both PSO and ACO algorithms individually. The effectiveness of the algorithm depends on carefully tuning 

parameters in both PSO and ACO [7]. B. Rambabu et al. implemented the least-trailed MBO and a hybrid MBO-ABC 

algorithm to optimize resource utilization, makespan, and degree of load imbalance. While MBO showed promise, it was 

found to have limited exploration capabilities. Therefore, a hybrid approach combining MBO with the ABC algorithm 

was implemented. The hybrid MBO-ABC algorithm demonstrated superior performance compared to the standalone 

MBO, achieving better optimization results and exhibiting improved convergence, effectively addressing the limitations 

identified in MBO. Comparing the MBO-ABC algorithm solely with MBO could be insufficient for a comprehensive 

performance assessment [8].  

The GEC-DRP algorithm, proposed by K. L. Devi et al., comprises several modules with specific functionalities: 

task clustering, workload prediction, VM controller, resource provisioner, and task scheduler. Task clustering utilizes K-

means clustering to categorize the tasks based on their CPU, memory, and bandwidth demands, resulting in K clusters. 

Workload prediction is achieved through exponential smoothing. The VM controller determines the number of VMs 

required based on the arrival rate of each cluster. The resource provisioner allocates resources for the VMs within the 

host. The GEC-DRP algorithm improves metrics such as makespan, load imbalance, throughput, and cost. However, it 

is important to note that these performance enhancements come at the cost of increased time complexity. This limits its 

scalability and applicability to large-scale computing environments [9].  The SAAC approach, proposed by A. A. Nasr et 

al., is a two-phase optimization strategy that combines SA and ACO algorithms to improve scheduling efficiency. In the 

first phase, SA generates a random solution, which serves as the starting point for the subsequent ACO scheduling phase. 

ACO then attempts to find a better or optimal solution compared to the initial one generated by SA. By combining SA 

and ACO, SAAC demonstrates superior performance compared to using either SA or ACO alone. Comparing the SAAC 

algorithm only with SA or ACO might not provide a comprehensive assessment of its performance [10]. K. Kamalam et 

al. combines the MinMin and MaxMin scheduling algorithms. The cloudlets are queued in increasing order of their 

length. If the average completion time exceeds the standard deviation of completion times, MinMin is used. MaxMin is 

used in the alternative case. The PTFR suffers from a potentially high makespan, especially with the late arrival of large 

cloudlets [11]. RSSM, proposed by N. M. Reda et al., integrates the range suffrage and sort mid scheduling algorithms 

to minimize makespan and enhance resource utilization. Each iteration involves a two-phase cloudlet selection process. 

First, cloudlets satisfying the range selection criteria are grouped into a subset based on their suffrage value. Then, the 

sort mid approach is applied to this subset in the second phase. The completion times of the selected cloudlets are sorted 

in non-decreasing order. For each cloudlet, two consecutive mid-completion times, K and K+1 (where K=m/2), are 

identified, and their average is calculated. The cloudlet with the highest average value is then assigned to the VM with 
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the shortest completion time. While the algorithm achieves optimal performance, it comes at the cost of high time 

complexity. This can limit the applicability of RSSM in large-scale computing environments [12, 13, and 14].  

Table 1: List of Abbreviations and Expansions 

Abbreviation Expansion Abbreviation Expansion 

ABC Artificial Bee Colony HEPGA HEFT-PSO-GA 

ACO Ant Colony Optimization HLFO Hybrid Lyrebird Falcon Optimization 

ACOFTF ACO File Type Format IABC-TS Improved Artificial Bee Colony-Task 

Scheduling 

ACOLBA Ant Colony Optimization based Load 

Balancing Algorithm 

IWOA Improved Whales Optimization Algorithm 

AHICS Adaptive Heterogeneity Index Cloudlet 

Scheduler 

LFO Lyrebird Falcon Optimization 

AWS Amazon Web Services LOA Lyrebird Optimization Algorithm 

CA-MLBS Content Aware Machine Learning Based 

Load Balancing Scheduler 

MBO Monarch Butterfly Optimization 

CNN Convolutional Neural Network ML Machine Learning 

CSLBA Crow Search Algorithm for Load Balancing MPSO Modified Particle Swarm Optimization 

CSP Cloud Service Provider MTBLB Modified Multi Time Based Load 

Balancing  

D2B Dynamic Degree Balance OLB Opportunistic Load Balancing 

DDMTS DRL-based Dynamic Multi-Objective Task 

Scheduling 

PSO Particle Swarm Optimization 

DFTF Data Files Type Formatting PTFR Paired Task Front Rear 

DOA Dingo Optimization Algorithm QMPSO Q-Learning Modified Particle Swarm 

Optimization 

DQL Deep Q-Learning QoS Quality of Service 

DQN Deep Q-Networks RL Reinforcement Learning 

DRL Deep Reinforcement Learning  RR Round Robin 

FOA Falcon Optimization Algorithm RSSM Range Suffrage Sort Mid 

FOA Falcon Optimization Algorithm SA Simulated Annealing 

GA Genetic Algorithm SAAC Simulated Annealing-Ant Colony  

GEC-DRP Genetic Encoded Chromosomes-Dynamic 

Resource Provisioner 

SLA Service Level Agreement 

GWO Grey Wolf Optimization SVM Support Vector Machine 

HAMM Hybrid Algorithm of MinMin and MaxMin TASA Task Aware Scheduling Algorithm 

HDDB Hybrid Dynamic Degree Balance VM  Virtual Machine 

HEFT Heterogeneous Earliest Finishing Time VMHS Variance Managed Heuristic Scheduler 

The HAMM cloudlet scheduling algorithm proposed by I. Syed et al., combines MinMin and MaxMin strategies 

to optimize metrics like makespan, waiting time, resource utilization, and load balancing. It dynamically categorizes 

cloudlets into small and large categories based on the average cloudlet length. The algorithm then dynamically allocates 

the cloudlets: MinMin scheduling is used when there are fewer small cloudlets, while MaxMin scheduling is employed 

when there are more small cloudlets. However, its reliance on MinMin can sometimes lead to increased makespan and 

reduced resource utilization [15]. The extended MinMin algorithm of J. Y. Maipan-Uku et al. processes cloudlets in their 

arrival order. In each iteration, it calculates the maximum and minimum completion times from the completion time 

matrix. The algorithm then compares the completion time of the first cloudlet in the queue with the maximum completion 

time. If the completion time of the first cloudlet is shorter, the MinMin scheduling approach is used to allocate the cloudlet 

to the VM with the minimum completion time. Otherwise, MaxMin scheduling is employed. The performance impacted 

by the late arrival of large-size cloudlets, resulting in increased makespan [16].  

The deadline-based minimum completion time algorithm, devised by M. Kumar et al., efficiently distributes 

workloads across VMs by elastically provisioning or de-provisioning resources. This decision-making process considers 

factors like the average number of missed deadlines and recent historical data, i.e., the last k optimal interval features. 

The VM threshold value based on load is a critical parameter in determining the elastic measures. This approach aims to 

minimize missed deadlines and makespan. However, its performance degrades when the interval is above 15 [17]. The 

HCA algorithm proposed by J. P. B. Mapetu et al., aims to allocate the maximum number of cloudlets within the 

minimum number of VMs. Load balancing is achieved by attaining the closest completion time among all VMs. The 

cloudlet allocation occurs in two phases. The allocation in the first phase is done using the heuristic of optimal completion 

time. In the second phase, the allocation is based on the earliest finishing time of the VMs. However, the HCA algorithm 

ultimately exhibits behavior identical to the MaxMin scheduling algorithm [18].  

 

 



D Gritto., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 3 (2024) p.756-778 

 

 

 761 

2.2 Review of Load Balancing Algorithms  

A. R. Khan et al. proposes a method for dynamic load balancing and optimization of multiple QoS metrics using 

cloudlet scheduling. This work leverages ML techniques and optimization principles to achieve these goals. The CNN 

estimates VM load levels by analyzing metrics like CPU and memory utilization. The RNN utilizes these estimates to 

analyze the trends and patterns in VM load over time to predict future loads. RL employs a load threshold to cluster the 

VMs as overloaded or underloaded. The clustering efficiency is further improved by integrating RL with HLFO, a hybrid 

of LOA and FOA algorithms. HLFO, using multi-objective optimization, aims to improve factors like makespan, energy 

consumption, load balancing, CPU and memory usage, and cloudlet prioritization. It achieves better results compared to 

RL, LOA, or FOA algorithms. The model is intricate and requires significant computational resources and time. 

Insufficient details on the algorithms and hyper-parameters hinder the ability to replicate the results [19]. The DDMTS 

algorithm, proposed by Z. Tong et al., employs DRL and DQN in order to achieve load-balanced cloudlet scheduling. 

The DRL model selects a suitable VM for the cloudlet based on the VM load limits. The cloud platform model decides 

whether the allocation will violate the SLA or not. If the SLA is not violated, a positive reward is assigned. Otherwise, 

the cloudlet is rejected. The deadline is the primary SLA constraint taken into consideration. This DQN enables the DRL 

agent to effectively learn the optimal dynamic load balancing policy in the DDMTS algorithm. The comparative study 

shows that the algorithm minimizes load imbalance and rejection rate compared to OLB, RR, and random algorithms. 

The DDMTS algorithm is limited by the complexity of training the DRL model and may require significant computational 

resources [20].  

QMPSO, implement by U. K. Jena et al., is a hybrid of MPSO and improved Q-learning algorithms. The improved 

Q-learning stores only the Q-value of the best action for each state in order to reduce storage space. It determines the load 

of each VM and tries to minimize the load imbalance among VMs. It is integrated with MPSO to enhance load balancing 

and the convergence rate. The algorithm has resulted in reduced makespan, waiting time, energy consumption, load 

imbalance, and improved throughput compared to MPSO and Q-learning strategies. The QMPSO algorithm may be 

limited by the accuracy of its Q-value estimation [21]. The CA-MLBS algorithm, proposed by        M. Adil et al., balances 

the workload among the VMs by identifying the content type of the workloads. It utilizes a SVM classifier to categorize 

the cloudlets as text, images, audio, or videos. The algorithm operates in two phases: the first phase involves content-

based cloudlet classification, while the second phase focuses on load balancing. Based on the content type, the algorithm 

creates four groups of VMs, and cloudlets are scheduled for the VMs in each category accordingly. The cloudlet 

scheduling is performed using a PSO scheduler. The proposed algorithm outperforms existing approaches such as DFTF 

and ACOFTF in terms of makespan, throughput, and response time. The CA-MLBS algorithm may be limited by the 

accuracy of its SVM classifier, especially for complex or hybrid content types [22].  

The multi-level hybrid load balancing algorithm of Elsakaan et al. aims to achieve load balancing by utilizing  two-

level schedulers: global and local schedulers. The K-means clustering algorithm is implemented to cluster the datacenter 

servers into four clusters based on server utilization ratio and makespan. At the next level, the RR algorithm distributes 

the workload among the clusters. The GA is used to distribute cloudlets among the servers within a cluster. The load 

balancing module identifies overloaded and underloaded servers or datacenter clusters to migrate the workload to the 

most underutilized ones. This methodology aims to reduce makespan, response time, SLA violations, and the number of 

cloudlet migrations at runtime. The computational overhead, sensitivity to cluster formation, potential for suboptimal 

solutions, and limited adaptability are the limitations of this work. [23]. R. Vijay et al. combined GA and PSO to optimize 

resource allocation in cloud computing. It aims to minimize completion time, cost, waiting time, makespan, and improve 

load balancing. The GA leverages evolutionary theory to generate a promising mapping of cloudlets to VMs after a 

predetermined number of iterations. This initial mapping is then further refined by PSO using a fitness function. By 

utilizing the strengths of both algorithms, this approach seeks to optimize the aforementioned metrics. The algorithm may 

result in local minima and limited consideration of Quality of Service (QoS), which are also limitations [24]. The IABC-

TS algorithm, proposed by R. N. Hanuman et al., is used to achieve load balancing by considering queue length, cloudlet 

length, and VM capacities as parameters of the fitness function. The algorithm dynamically monitors the workload on 

each VM and manages an even load distribution among the VMs. IABC-TS is designed to be suitable for both 

homogeneous and heterogeneous cloud setups. This multi-objective optimization tries to minimize makespan, cost, and 

improve load balancing. The IABC-TS algorithm may struggle with complex workload patterns or sudden changes in 

resource demand [25].  

The GWO-PSO algorithm, proposed by of M. S. Al Reshan et al., aims to achieve fast convergence and global 

optimization in load balancing by combining the strengths of the GWO and PSO algorithms. The exploration, 

exploitation, and convergence capabilities of GWO are combined with the global optimization capability of the PSO 

algorithm to attain the objective. It tries to avoid getting trapped in local minima. In comparison to PSO, SSO, ABC, 

BAT, and GWO, the GWO-PSO produces an optimal makespan, response time, throughput, and load balancing. The 

GWO-PSO algorithm may be sensitive to parameter tuning and may struggle with highly dynamic workloads [26]. Table 

2 presents a comparison of scheduling and load balancing algorithms.  
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Table 2: Comparison of Cloudlet Scheduling and Load Balancing Algorithms 

Category Algorithm 
Description and Prime 

Metrics Optimized 
Advantages Disadvantages 

Evolutionary 

Algorithms 

[27] 

 

Bacteria Foraging 

Task Scheduling 

Algorithm 

(BFTSA)  

BFTSA maps cloudlets to 

VMs to minimize energy 

consumption and makespan 

while ensuring load balancing. 

PMO: Energy consumption, 

makespan and load balancing. 

By preventing from local 

minima, the algorithm 

minimizes makespan and 

energy consumption while 

improving load balancing. 

The priority of the 

cloudlet is not set 

with any special 

mechanism. 

Hybrid 

Algorithm 

[28] 

 

SLA Load 

Balancing 

Algorithm for the 

Datacenters  

(SLA-LB)  

It predicts potential SLA 

violations in datacenters and 

migrates the VMs. PMO: 

Makespan, execution time, 

resource utilization and SLA 

violation. 

It offers dynamic 

scheduling and load 

balancing and ensures 

SLA compliance. It 

improves makespan and 

execution time.  

Work load migration 

procedure is not 

discussed. 

 

Hybrid 

Algorithm 

[29] 

 

Clustering based  

MaxMin 

Scheduling  

Groups the cloudlets by 

resource needs and execution 

time variation. It prioritizes 

scheduling cloudlets to the 

clusters with the longest 

completion time. PMO: 

Makespan, VM utilization. 

It improves the overall 

makespan compared to 

MaxMin by efficiently 

utilizing faster VMs for 

longer tasks and handling 

variable task lengths 

through clustering. 

Clustering VMs and 

simulating cluster 

adds overhead. The 

effectiveness is based 

on the clustering 

method selected.  

Hybrid 

Algorithm 

[30] 

Task Aware 

Scheduling 

Algorithm (TASA)  

Leveraging the strengths of 

suffrage and MinMin 

algorithms. For even numbered 

tasks, suffrage is used, while 

for odd numbered tasks, 

MinMin is used. PMO: 

Makespan, response time. 

Reduced makespan, 

response time and 

efficiency in resource 

allocation. 

 

Potential overhead 

due to continuous 

switching of 

scheduling 

algorithms. 

Performance may 

vary based on the 

number of cloudlets 

in real environments. 

Hybrid 

Algorithm 

[31] 

Fuzzy Round Robin 

Algorithm (FRR)  

It considers processing speed 

and the current VM load. It 

tracks VM details and assigns 

incoming requests to the VMs 

with the least load.  

PMO: Average response time, 

Datacenter processing time. 

Outperforms RR by 

reducing processing time 

and improving overall 

response time, 

maximizing resource 

utilization. 

 

Complexity of the 

algorithm. The 

assessment of 

cloudlet 

characteristics is not 

discussed. 

 

Hybrid 

Evolutionary 

Algorithms 

[32] 

Hybrid Dingo and 

Whale 

Optimization 

Algorithm Load 

Balancing 

Mechanism 

(HDWOA-LBM)  

Combining DOA and IWOA, 

HDWOA achieves near-

optimal load balancing. PMO: 

Load balancing, reliability, 

resource utilization, makespan 

and throughput. 

The dynamic adaptability 

of this algorithm produces 

near-optimal and efficient 

load balancing. 

 

Complexity of 

implementation,  

fine-tuning of 

parameters is not 

discussed in detail, 

though it is a crucial 

aspect of 

optimization 

algorithms for 

improving 

performance. 

Hybrid 

Evolutionary 

Algorithms 

[33] 

Osmotic Hybrid 

Artificial Bee 

Colony and Ant 

Colony 

Optimization 

Algorithm  

(OH-BAC)  

Combining ABC, ACO 

algorithms, and osmosis 

principles it selects the hosts 

for the VM migration.  

PMO: SLA violation, 

performance degradation, 

number of VM migrations, and 

number of host shutdowns. 

Achieves higher energy 

efficiency compared to 

other bio-inspired 

algorithms taken for 

comparison. Minimizes 

SLA violations, 

performance degradation, 

VM migrations, and host 

shutdowns. 

Has higher SLA 

violations time per 

active host. 

Combining the 

knowledge bases of 

ABC and ACO adds 

complexity. 

 

PMO*: Prime Metrics Optimized. 
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The CSLBA algorithm, proposed by H. Singh et al., is inspired by the intelligent foraging behavior of crows. It aims 

to optimally assign cloudlets to VMs. It leverages concepts like probability and flight length from the crow search 

algorithm to iteratively explore solutions and update the best solution. The performance of the algorithm is evaluated 

against the standard ACOLBA algorithm. Results demonstrate that CSLBA outperforms ACOLBA in reducing average 

power consumption, cost, and balancing data center loading under different service broker policies, including closest data 

center and optimization for response time. The CSLBA algorithm converges within a fair number of iterations and results 

in enhanced results for various VM configurations. The CSLBA may be limited by its reliance on the accuracy of the 

crow search algorithm [34]. MCS-DQN, proposed by A. Chraibi et al., aims to minimize makespan using RL and DQN. 

It employs a reward function to enhance convergence and performance. The algorithm demonstrates optimal results in 

minimizing makespan, cloudlet waiting time, and improving resource utilization. However, it requires more 

computational resources than traditional heuristic algorithms. The algorithm's efficiency is dependent on its training 

parameters [35]. The HDDB algorithm, proposed by A. Joshi et al., is a hybrid algorithm based on the D2B-CPU and 

D2B-membership algorithms. The D2B-CPU prioritizes placing VMs on hosts with lower CPU utilization in order to 

balance CPU load and achieve even load distribution. D2B-membership estimates a membership value for each host and 

allocates VMs to hosts with suitable membership values. The membership value considers factors like requested RAM, 

MIPS, and bandwidth by the VM and the available RAM, MIPS, and bandwidth of the host. The performance of HDDB 

is reported to be better than FCFS, SJF, and RR algorithms in terms of turnaround time, throughput, load balancing, cost, 

CPU, bandwidth, and memory utilization. The HDDB algorithm may struggle with dynamic workloads and may not be 

as effective in handling highly heterogeneous cloud environments [36].  

P. Kumar et al. proposed the MTBLB algorithm, which utilizes three different approaches in order to achieve 

load balancing. AWS CloudWatch is instrumental in collecting requests from user VMs. Cron Jobs handles the processing 

of these requests in a systematic manner. The integration of these components with the RR algorithm ensures efficient 

load balancing and optimal resource utilization in cloud environments. The algorithm performs better than the RR 

algorithm in terms of the standard deviation of response time. The dependencies on AWS CloudWatch and Cron Jobs 

services could introduce potential points of failure [37].  

While the reviewed research articles had not explicitly addressed heterogeneity as a primary focus, the proposed 

AHICS algorithm offers several key advantages. Its direct consideration of heterogeneity, computational efficiency, and 

simplicity of implementation make it a promising candidate for optimizing cloud performance.  
 

3. FRAMEWORK AND FORMULATION 

 

3.1 System Model 

This paper tackles the challenge of heterogeneity in cloud environments. This heterogeneity introduces challenges 

in resource allocation and scheduling decisions, which impact factors like makespan, VM utilization, and load balancing. 

To address this, a three-tier scheduling approach is proposed.  

The architecture consists of an AHICS scheduler, a heterogeneity index estimator, a VMHS scheduler, and a MaxMin 

scheduler. AHICS acts as the main coordinator, monitoring the level of heterogeneity through the heterogeneity index 

estimator within the cloud. The heterogeneity index estimator component calculates the degree of variation within the 

cloud environment. When heterogeneity is low (CLHetInx), the VMHS scheduler efficiently allocates cloudlets to VMs. 

The MaxMin scheduler can handle highly heterogeneous (CHHetInx) environments, where there are greater variations 

in cloudlet and VM characteristics.  

The AHICS scheduler switches between the VMHS and MaxMin schedulers based on the combined heterogeneity 

index (CHetInx) between the cloudlets and the VMs. This dynamic selection aims to optimize scheduling metrics such 

as makespan, VM utilization, degree of load balancing, and reduce the standard deviation of completion time among 

VMs. Figure 2 illustrates the system model of the proposed work. 

 
Figure 2: System Model of AHICS Scheduler 
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3.2 Problem Definition 

Existing cloud scheduling algorithms are not effective in addressing the heterogeneity among cloudlets and 

VMs, leading to suboptimal makespan, resource utilization, and performance. This paper develops a novel AHICS 

scheduling algorithm that can effectively handle heterogeneity and improve the efficiency of cloud computing systems. 

The scheduler is designed to adapt to varying levels of heterogeneity within the cloud. 

 

3.3 Problem Formulation 

The cloud environment comprises a set of n cloudlets CDL={cd1, cd2, cd3… cdn} and m virtual machines 

VML={vm1, vm2, vm3 … vmm} where n, m  Z +. The cloudlets may also have varying IDs, lengths, execution times, 

priorities, and deadlines. All cloudlets in this study are independent, non-preemptive and have zero arrival time i.e., all 

arrive at the same time. The VMs have distinct configurations, including processing power (MIPS), number of processors, 

memory, bandwidth, storage, virtual machine manager (VMM), etc. The proposed VMHS, MaxMin and AHICS 

schedulers aim to map the cloudlets to VMs by satisfying the objectives outlined in Section 3.4. This allocation is based 

on the heterogeneity index among the cloudlets and the VMs. The computation for the heterogeneity index is elaborated 

in Section 3.5.  

 

3.4 Objectives 

The primary objectives of the AHICS scheduler are as follows: 

1. Minimize Makespan: Minimize the overall completion time of cloudlets.  

2. Maximize VM Utilization: Efficiently allocate cloudlets to VMs to fully utilize available VMs. 

3. Ensure load balancing: Distribute cloudlets evenly across VMs by preventing overloading or underloading 

of any specific VM. 

4. Minimize the standard deviation of cloudlet completion time among the VMs.  

 

3.5 Computational Formulas 

The formulas involved in computing various scheduling metrics and the heterogeneity index calculation are 

described below. This heterogeneity index calculation is used within the heterogeneity index estimator of the proposed 

model. The AHICS scheduler leverages this estimate to select either the VMHS or MaxMin scheduler. Table 3 contains 

the various notations used in these formulas and their descriptions. 

 

Table 3: List of Notations and Descriptions 

Notation Description Notation Description 

AVMur Average VM utilization ratio MCTc Mean Completion Time of cloudlet 

CDL Cloudlet List MI Million Instructions 

CHetInx Combined Heterogeneity Index MIPS Million Instructions per Second 

CHHetInx Combined High Heterogeneity Index MSSL Makespan or Schedule Length 

CLHetInx Combined Low Heterogeneity Index MVMct Mean VM completion time 

Covcd Co-variance of cloudlets MVMS Mean VM Speed 

Covvm Co-variance of VMs n Number of Cloudlets 

CTc[n][m] Completion Time of cloudlet  RTvm[m] Ready Time of VM 

CTvm[j] Completion Time of VM SDCDct[i] Standard Deviation of Cloudlet completion time  

DLIB Degree of Load Imbalance SDCDL Standard Deviation of Cloudlet Length 

ETc[n][m] Execution Time of cloudlet  SDVMct Standard Deviation of VM completion time 

HetInxcd Heterogeneity Index among cloudlets SDVMS Standard Deviation of VM Speed 

HetInxvm Heterogeneity Index among VMs TCTc Total Completion Time of cloudlet 

m Number of VMs VML VM List 

MCL Mean Cloudlet Length MCTc Mean Completion Time of cloudlet 

 

Execution time of a cloudlet (ETc[][]) depicts the actual execution or computation time of the ith cloudlet on the jth VM. 

It is defined by the ratio of cloudlet length to the processing speed of the VM. 

ETc[i][j] =
Length of Cloudleti(in MI)

Processing Speed of VMj (in MIPS)
 measured in msec      (1)  

Completion time of a cloudlet (CTc[][]) is determined by the sum of the execution time of the ith cloudlet on the jth VM 

and the ready time of the jth VM. 

CTc[i][j] = ETc[i][j] + RTvm[j] measured in msec       (2) 

Total completion time of cloudlets (TCTc) measures the completion time of all the cloudlets in the cloudlet bag. It 

measures the summation of completion time for all n cloudlets in their allocated VM among the m VMs based on the 

scheduling algorithm. 
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TCTc = ∑ ∑ CTc[i][j] measured in msecm−1
j=0

n−1
i=0        (3) 

Standard Deviation of Cloudlet completion time (SDCDct[]) measures the standard deviation for each cloudlet (cd1, 

cd2, ..., cdn, where i=0 to n-1) to complete its execution across all VMs (vm1, vm2, ..., vmm, where j=0 to m-1). 

Mean Completion of cloudlet MCTc[i] =
∑ CTc[i][j]m−1

j=0

m
      (4) 

SDCDct[i] = √
∑ (CTc[i][j]−MCTc[i])

2m−1
j=0

m
        (5) 

Makespan or Schedule Length (MSSL) represents the maximum completion time of all n cloudlets. 

Makespan MSSL = Maximum(CTc[i][j]) measured in msec, where MSSL ≤ TCTc   (6) 

Average Virtual Machine utilization ratio (AVMur) refers to the average percentage of VMs being utilized in executing 

a set of cloudlets over a specific period of time. It provides an indication of how effectively the VMs are utilized in 

processing the assigned cloudlets and the overall efficiency of VM utilization in the scheduling process. A higher average 

VM utilization ratio indicates that the VMs are effectively utilized, while a lower ratio suggests potential underutilization 

of the VMs. 

AVMur =
∑ CTvm[j]m−1

j=0

MSSL∗m
           (7) 

Degree of Load Imbalance (DLIB) is a metric used to quantify the extent of an uneven or imbalanced distribution of 

computational workload or cloudlets among VMs. A higher value of DLIB indicates a greater degree of imbalance, 

suggesting that certain VMs are handling huge workloads compared to other VMs. Conversely, a lower DLIB value 

indicates a more balanced distribution of workload across VMs, leading to better resource utilization and system 

performance. It is particularly important to achieve fairness or equity in resource allocation, ensuring that no VM is 

overloaded while others are underutilized. 

DLIB = m ∗
(Maximum(CTvm[j]−Minimum(CTvm[j])))

∑ CTvm[j]m−1
j=0

       (8) 

Standard Deviation of Virtual Machine completion time (SDVMct) is used to measure the spread or variability of 

completion times across different VMs. A higher SDVMct indicates greater variability in completion times among VMs, 

while a lower SDVMct suggests more consistency in completion times across the VMs. SDVMct is important to achieve 

consistent performance or minimize variability in cloudlet completion times across VMs. 

 MVMct =
∑ CTvm[j]m−1

j=0

m
 measured in msec        (9) 

SDVMct = √
∑ (CTvm[j]−MVMct)

2m−1
j=0

m
measured in msec       (10) 

Heterogeneity Index among cloudlets (HetInxcd) assists in evaluating the diversity among cloudlets within the cloudlet 

bag in terms of their characteristics and resource requirements. AHICS utilizes cloudlet length as a primary measure to 

determine the heterogeneity index of the cloudlets. The HetInxcd is based on the co-variance of cloudlet length. 

Mean Cloudlet Length MCL =
∑ Cloudlet[i].Lengthn−1

i=0

n
  measured in MI     (11) 

Standard Deviation of Cloudlet Length SDCDL = √
∑ (Cloudlet[i].Length−MCL)2n−1

i=0

n
 measured in MI  (12) 

HetInxcd =
SDCDL

MCL
∗ 100          (13) 

Heterogeneity Index among Virtual Machines (HetInxVM) assists in evaluating the diversity among VM 

characteristics, capacities, and configurations, such as processing speed, memory, storage capacity, network bandwidth, 

and other relevant attributes. AHICS makes use of processing speed, RAM, and bandwidth limits to measure the VM 

heterogeneity index. This heterogeneity index is a combined index based on the heterogeneity among the processing 

speed, RAM, and bandwidth size of the VMs. However, the measure for the heterogeneity index of VM that is based on 

the speed alone is depicted here. The other two are estimations are done in a similar manner. The HetInxvm is based on 

the co-variance of the virtual machines speed. 

Mean Virtual Machine Speed MVMS =
∑ VM[j].Speedm−1

j=0

m
  measured in MIPS`    (14) 

Standard Deviation of Virtual Machine Speed SDVMS = √
∑ (VM[j].Speed−MVMS)2n−1

i=0

m
 measured in MIPS 

HetInxvm =
SDVMS

MVMS
∗ 100          (15) 

Combined Heterogeneity Index (CHetInx) measures the combined heterogeneity index of both the cloudlets and the 

VMs. 

CHetInx =
HetInxcd+HetInxvm

2
         (16) 
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4.  PROPOSED ALGORITHMS 

4.1 Variance Managed Heuristic Scheduler (VMHS) 

The VMHS operates in four phases, as outlined below. The scheduler computes the completion time CTc[i][j] 

for each cloudlet on each VM. It then computes the standard deviation of completion time for each cloudlet across 

different VMs. The algorithm identifies the cloudlet with the highest standard deviation of completion time and the VM 

with the earliest completion time for that specific cloudlet. It then maps the selected cloudlet to the identified VM and 

updates the ready time RTvm[j] of the VM. The process repeats until all cloudlets are scheduled. A cloudlet with a higher 

standard deviation of completion time among VMs indicates significant variability in its completion times when assigned 

to different VMs. Allocating these cloudlets to the VM with the earliest completion time aims to balance the workload 

distribution and reduce the load imbalance. The proposed VMHS algorithm demonstrates improved performance in 

environments characterized by low heterogeneity indexes. However, the VMHS algorithm produces mixed performance 

in scenarios where the heterogeneity index is high.  

Algorithm I – Variance Managed Heuristic Scheduler (VMHS) 

Input:  

A list of n cloudlets with varying lengths measured in million instructions (MI): 

List <Cloudlets> CDL:=(cd1, cd2, cd3… cdn), where i | 1 ≤ i ≤ n 

A list of m virtual machines with varying processing power measured in million instructions per second (MIPS): 

List <Virtual Machines> VML:=(vm1, vm2, vm3 … vmm), where j | 1 ≤ j ≤ m 

Given Configuration (n, m) 

Output: 

A schedule with minimized makespan, improved VM utilization ratio, reduced load imbalance, and reduced standard 

deviation of completion time among the VMs: 

CloudletVmSchedule: = returnMap<Cloudlet, VirtualMachine> 

Computational Matrices: 

Matrix  1: ETc[i][j]: Execution time of cloudlet cdi on virtual machine vmj  

Matrix  2: RTvm[j]: Ready time of virtual machine vmj  

Matrix  3: CTc[i] [j]: Completion time of cloudlet cdi on virtual machine vmj  

Matrix  4: SDCDct[i]: Standard deviation of cloudlet completion time for each (cd1, cd2, cd3 … cdn) across virtual 

     machines (vm1, vm2, vm3…vmm)                                           

Begin VMHS-Scheduler (Configuration n, m) 

Phase 1: Compute CTc[n][m] matrix 

1. For each cloudlet cdi in the cloudlet list CDL:   

2. For each virtual machine vmj in the virtual machine list VML: 

3. Compute CTc[i][j]:=ETc[i][j]+ RTvm[j]       

4. End loop of step 2  

5. End loop of step 1  

Phase 2: Compute SDCDct[n] matrix 

6. For each cloudlet cdi in the cloudlet list CDL:   

7. For each virtual machine vmj in the virtual machine list VML: 

8. Compute SDCDct[i] 

9. End loop of step 7 

10. End loop of step 6 

Phase 3: Selection of cloudlet and virtual machine 

11. Find a cloudlet cdi with highest SDCDct[i] value 

12. Find a virtual machine vmj with earliest completion time CTc[i][j] for cloudlet cdi 

Phase 4: Mapping cloudlet to the virtual machine 

13. Map the cloudlet cdi to the virtual machine vmj 

14. Discard the cloudlet cdi from the cloudlet list CDL 

15. Update the ready time RTvm[j] of the virtual machine vmj 

16. Do until there is no cloudlet left in the cloudlet list CDL, repeat steps 1-15 

End VMHS-Scheduler 

Time Complexity Analysis of VMHS 

The time complexity analysis of the VMHS scheduler is conducted in four phases. In Phase I, the completion 

time matrix, with dimensions n x m, is computed, resulting in a time complexity of O(n * m). Similarly, Phase II computes 

the standard deviation of completion time, also taking O(n * m) time. In Phase III, the cloudlet with the highest standard 

deviation of completion time and the virtual machine with the earliest finishing time are determined, incurring time 

complexities of O(n) and O(m), respectively. Thus, the total time complexity for Phase III is O(n + m). In the final phase, 

cloudlet-to-virtual-machine mapping and updating the ready time of virtual machines are performed, both in constant 

time. The algorithm iterates until no cloudlets remain in the cloudlet bag, which takes O(n) time. The time complexity is 



D Gritto., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 3 (2024) p.756-778 

 

 

 767 

calculated as O(n * m) + O(n * m) + O(n + m) + O(n). Since the dominant time complexity is O(n * m), the overall time 

complexity simplifies to O(n * m). 

4.2 MaxMin Scheduler 

MaxMin cloudlet scheduling is a well-established heuristic algorithm known for minimizing makespan 

compared to other heuristic scheduling algorithms. This algorithm sorts cloudlets by their length and assigns the largest 

cloudlet to the VM with the earliest finishing time. It prioritizes large-sized cloudlets to minimize its completion time 

there by ensuring reduced makespan, efficient VM utilization, and load balancing. This optimization is attributed to the 

fact that smaller-sized cloudlets typically require fewer computational resources and less execution time than larger ones. 

Additionally, MaxMin benefits smaller cloudlets by leaving enough resources for their utilization. The MaxMin 

algorithm performs well, especially in scenarios where smaller cloudlets outnumber the larger ones. The MaxMin 

algorithm yields better results in scenarios where the heterogeneity index is high. In some cases, the MaxMin algorithm 

suffers in performance, specifically in low heterogeneity scenarios.  

Algorithm II – MaxMin Scheduler  

Begin MaxMin-Scheduler (Configuration) 

Phase 1: Compute CTc[n][m] matrix 

1. For each cloudlet cdi in the cloudlet list CDL:   

2. For each virtual machine vmj in the virtual machine list VML: 

3. Compute CTc[i][j]:=ETc[i][j]+ RTvm[j]  

4. End loop of step 2  

5. End loop of step 1  

Phase 2: Selection of cloudlet and virtual machine 

6. Find the minimum completion time CTc[i][j] for all cloudlets 

7. Find a cloudlet cdi with maximum value among the minimum completion time CTc[i][j] 

8. Find a virtual machine vmj with earliest completion time CTc[i][j] for cloudlet cdi 

Phase 3: Mapping cloudlet to the virtual machine 

9. Map the cloudlet cdi to the virtual machine vmj 

10. Discard the cloudlet cdi from the cloudlet list CDL 

11. Update the ready time RTvm[j] of the virtual machine vmj 

12. Do until there is no cloudlet left in the cloudlet list CDL, repeat steps 1-11 

End MaxMin-Scheduler 

4.3 Adaptive Heterogeneity Index Cloudlet Scheduler (AHICS) 

VMHS is well-suited for low-heterogeneity environments where cloudlets and VMs have similar characteristics, 

allowing for effective workload balancing and consistent performance. MaxMin, on the other hand, is designed to handle 

diverse workloads in high-heterogeneity environments, ensuring fair resource allocation and preventing VM overload. 

AHICS is proposed to address the limitations of VMHS and MaxMin in heterogeneous cloud environments. The AHICS 

algorithm is designed to be adaptive for all heterogeneity levels. AHICS considers the CHetInx among the cloudlets and 

VMs in order to select either VMHS or the MaxMin scheduler. When the heterogeneity index is low, AHICS schedules 

the cloudlets using VMHS. It chooses the MaxMin scheduler when the heterogeneity index is high. Experimental 

evaluation consistently shows that AHICS performs well in both cases, achieving its objectives. AHICS begins by 

determining the HetInxcd, the HetInxvm, and the CHetInx. If the CHetInx is low, it calls the VMHS scheduler; otherwise, 

it invokes the MaxMin scheduler to map the cloudlets and the VMs. If the CHetInx is less than or equal to 25, the VMHS 

scheduler is selected. Otherwise, the MaxMin scheduler is invoked to manage allocation.  

Algorithm III – Adaptive Heterogeneity Index Cloudlet Scheduler (AHICS) 

Input: 

Given Configuration (n, m) 

n: Number of cloudlets, where i | 1 ≤ i ≤ n 

m: Number of virtual  machines, j | 1 ≤ j ≤ m 

Output: 

A schedule with minimized makespan, improved VM utilization ratio, reduced load imbalance, and reduced standard 

deviation of completion time among the VMs: 

CloudletVmSchedule: = returnMap<Cloudlet, VirtualMachine> 

Assessment Metrics: MSSL, AVMur, DLIB, SDVMct  

Computational Matrices: 

Matrix 1: CLen[n]: Stores cloudlet length  

Matrix 2: VMSpeed[m]: Stores virtual machine speed  

Begin AHICS-Scheduler (Configuration) 

Phase 1: Compute Heterogeneity Index  

HetInxcd:=Calculate-Covcd (CLen[n]) 

HetInxvm:=Calculate-Covvm (VMSpeed[m]) 

CHetInx:=Mean(HetInxcd + HetInxvm) 
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Phase 2: Check CHetInx and select the scheduler 

If (CHetInx<=25) then 

Invoke VMHS-Scheduler  

CloudletVmSchedule:=VMHS-Scheduler(Configuration) 

Else  

Invoke MaxMin-Scheduler 

CloudletVmSchedule:=MaxMin-Scheduler(Configuration) 

End If 

Phase 3: Measure performance metrics 

MSSL:=MeasureMakespan(CloudletVmSchedule) 

AVMur:=MeasureVmUtilization(CloudletVmSchedule) 

DLIB:=MeasureDLIB(CloudletVmSchedule) 

SDVMct:=MeasureSDVM(CloudletVmSchedule) 

Phase 4: Ascertain (MSSL, AVMur, DLIB, SDVMct) 

End AHICS-Scheduler 

Time Complexity Analysis of AHICS 

  Phase I involves calculating the Coefficient of Variation (CoV) for cloudlets and virtual machines by iterating 

over the cloudlet lengths (n) and virtual machine speeds (m), respectively. Computing the mean of CoV involves a 

constant-time operation. Therefore, the time complexity of Phase I is O(n + m). Phase II involves a simple conditional 

check based on the computed heterogeneity index. The time complexity of this phase is O(1) since it involves constant-

time operations. In phase III, various performance metrics are measured, which involves iterating over the generated 

schedule. These measurements have a combined time complexity of O(n * m). Ascertaining the performance metrics 

evaluates the overall performance of the scheduler. The time complexity of this phase is O(1). Overall, the time 

complexity is O(n + m) + O(1) + O(n * m) + O(1), resulting in a time complexity of O(n * m).  

 

5. EXPERIMENTAL SETUP  
 

This experimental evaluation utilizes the CloudSim 3.0.3 simulator, a Java-based framework widely used for 

simulating cloud infrastructures and services. Cloudlets and VMs with diverse configurations and numbers are employed 

to evaluate the performance of the proposed AHICS algorithm. The analysis utilizes cloudlets ranging from 10 to 1500 

and VMs ranging from 3 to 32 numbers with different specifications or configurations. The cloudlets used in this study 

were synthetic cloudlets generated using CloudSim 3.0.3.  

These cloudlets were designed to represent various types of cloud applications. A simulated environment with 

varying numbers and configurations of VMs was also created programmatically. Cloudlets ranging in size from 1000 MI 

to 25016250 MI and VMs ranging from 100 MIPS to 625000 MIPS were evaluated. The experimental setup, including 

all configurations, is shown in Table 4. 

Table 4: Cloudlet and VM configuration 

Components Parameters Parameterization 

Datacenter 

Datacenter Instances 1 

Host Instances 12 

VM scheduler policy VmSchedulerSpaceShared 

Cores or processing units Dual/Quad 

Bandwidth 10000 

Operating System Linux 

Hypervisor (VMM) Xen 

Host memory capacity in MB 100000 

Virtual  

Machines 

VM count 3-32 

VM speed in MIPS 10000-14000 

Processing Elements PEs 1 

VM  memory in MB 512 

Bandwidth 1000 

Cloudlet scheduler policy CloudletSchedulerSpaceShared 

Cloudlets 

Cloudlet length in MI 36000-95000 

Cloudlet count 10-1500 

Processing Elements PEs 1 

 

The time complexity of the proposed VMHS, MaxMin and AHICS schedulers along with the time complexity of the 

comparison algorithms are shown in Table 5.  
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Table 5: Time Complexity Table 

Algorithms MinMin MaxMin TASA HAMM PTFR RSSM VMHS AHICS 

Time 

Complexity 
O(mn2) O(mn2) O(mn2) O(mn2) O(mn2) O(n2 m log m) O(n * m) 

O(n * m) 

or 

O(mn2) 

The flowchart of the proposed AHICS scheduler is illustrated in Figure 3. It depicts the selection of scheduling 

algorithm based on CHetInx for mapping cloudlets to the VMs during different scenarios.  

 
Figure 3: Flow Chart of AHICS Scheduler 

5.1 Illustration 

For illustration purposes, a configuration comprising 10 cloudlets and 4 VMs is considered, with two varying 

levels of CHetInx. The CHetInx score is calculated based on the cloudlets varying lengths (measured in Millions of 

Instructions, MI) and the VMs processing speeds (measured in Million Instructions per Second, MIPS). The performance 

of the algorithms, assessed in terms of makespan, is depicted in Table 6. The specific configurations of these cloudlets 

and VMs are detailed below: 

Case I: CLHetInx configuration 

CDL[]={69000,67000,66000,62000,65000,60000,64000,68000,63000,61000} 

VML[]={3500,4500,5000,4000}  
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[
 
 
 
 
 
 
 
 
 
 

      VM0   VM1  VM2   VM3
CD0 19.71 15.33 13.8 17.25
CD1 19.14 14.89 13.40 16.75
CD2 18.86 14.67 13.20 16.50
CD3 17.71 13.78 12.40  15.50
CD4 18.57 14.44 13.00 16.25
CD5 17.14 13.33 12.00 15.00 
CD6 18.29 14.22 12.80 16.00
CD7 19.43 15.11 13.60 17.00
CD8 18.00 14.00 12.60 15.75
CD9 17.43 13.56 12.20 15.25]

 
 
 
 
 
 
 
 
 
 

                        

[
 
 
 
 
 
 
 
 
 
 

𝑆𝐷
2.2093
2.1451
2.1148
1.9843
2.0823
1.9215
2.0520
2.1790
2.0182
1.9540]

 
 
 
 
 
 
 
 
 
 

 

For the CLHetInx schedule, the VMHS scheduler is used. The heterogeneity index for this schedule is 8.80. The 

completion time and standard deviation matrices from iteration one shown above indicate that cloudlet CD0 has the 

highest standard deviation, and VM2 is the VM with the earliest finishing time. Therefore, cloudlet CD0 is allocated to 

VM2 as dictated by the VMHS scheduler. The entire schedule is depicted below. 

Case I schedule: {CD5->1, CD0->2, CD9->3, CD3->0, CD8->1, CD7->2, CD6->3, CD4->0, CD1->2, CD2->1} 

Case II: CHHetInx configuration 

CDL[]={125000,35000,55000,200000,450000,320000,95000,75700,550000,600000} 

VM[]={13500,2500,15000,4000} 

[
 
 
 
 
 
 
 
 
 
 

      VM0   VM1  VM2   VM3
CD0 044.44 240.00 040.00 150.00

  CD1 040.74 220.00 036.67 137.50   
CD2 033.33 180.00 030.00 112.50
CD3 023.70 128.00 021.33 080.00 
CD4 014.81 080.00 013.33 050.00 
CD5 009.26 050.00 008.33 031.25
CD6 007.04 038.00 006.33 023.75
CD7 005.61 030.28 005.05 018.93
CD8 004.07 022.00 003.67 013.75
CD9 002.59 014.00 002.33 008.75 ]

 
 
 
 
 
 
 
 
 
 

    

For the CHHetInx schedule, the MaxMin scheduler is used. The heterogeneity index for this schedule is 72.43. The 

completion time matrix of iteration one shown above indicate that cloudlet CD9 is the largest, and VM2 is the VM with 

the earliest finishing time. Therefore, cloudlet CD9 is allocated to VM2 as dictated by the MaxMin scheduler. The entire 

schedule is depicted below. 

Case II schedule: {CD9->2, CD8->0, CD0->1, CD3->3, CD5->0, CD7->3, CD4->2, CD6->0, CD2->1, CD1->2}. 

Graphs 1 and 2 depict the makespan for the two aforementioned schedules: the schedule with a low heterogeneity index 

(CLHetInx) and the schedule with a high heterogeneity index (CHHetInx). 

Table 6: Makespan for Illustration 

Algorithm 
Makespan (MSSL) in msec 

CLHetInx=8.80 CHHetInx=72.32 

MinMin 43.43 103.8 

TASA 43.43 76.77 

HAMM 42.77 72.43 

PTFR 43.43 95.77 

RSSM 43.21 79.36 

AHICS 42.10 72.43 
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Figure 1: Makespan comparison for CLHetInx  Figure 2: Makespan comparison for CHHetInx 

   

 

6. RESULTS AND DISCUSSION  

The performance of the proposed AHICS algorithm is compared against several established heuristic algorithms, 

including MinMin, TASA, HAMM, PTFR, and RSSM. These algorithms were selected for comparison due to their 

similar heuristic nature and better performance compared to other heuristic algorithms in the literature. Given their 

demonstrated effectiveness, these algorithms were taken for comparison with the proposed AHICS scheduling algorithm 

[38-40]. A total of 75 simulations were conducted with different cloudlet and VM configurations. Of these, 40 

representative trials are listed in Table 7. Table 7 presents the makespan (MSSL) performance of AHICS compared to the 

other schedulers. Tables 8 to 10 show the effectiveness of AHICS in terms of VM utilization ratio (AVMur), degree of 

load imbalance (DLIB), and standard deviation of VM completion time (SDVMct). AHICS demonstrates enhanced 

performance across multiple metrics, such as makespan, VM utilization, degree of load imbalance, and the standard 

deviation of completion time among VMs. 

 

Table 7: Performance Measure for MSSL 

S. No. 

Configuration 

(n, m, CHetInx) 
Makespan (MSSL) in msec 

n m CHetInx Min-Min TASA HAMM PTFR RSSM AHICS 

1 177 17 10.38 472.09 472.09 472.09 472.1 469.35 466.99 

2 200 20 31.4 378.79 375.36 362.94 376.25 365.21 362.94 

3 201 15 10.28 611.95 611.95 611.95 611.93 611.02 609.2 

4 231 19 13.16 791.89 791.89 791.89 791.88 794.4 788.89 

5 251 25 56.18 569.83 569.83 569.83 571.62 546.44 533.37 

6 300 30 42.4 569.29 554.77 543.46 571.46 551.22 543.46 

7 305 16 15.83 132.38 132.38 132.38 132.34 131.47 131.28 

8 310 16 45.34 942.01 926.37 901.57 942.59 912.9 901.57 

9 316 16 10.35 2708.38 2708.38 2708.38 2708.18 2705.94 2696.31 

10 381 17 12.42 1105.17 1105.17 1105.17 1105.19 1099.12 1097.08 

11 413 17 36.38 1652.85 1652.85 1652.85 1672.1 1620.51 1620.24 

12 421 17 12.95 1396.24 1396.24 1396.24 1396.3 1394.95 1382.29 

13 437 19 19.27 2013.33 2013.33 2013.33 2014.14 2003.95 1993.64 

14 456 19 11.81 1961.54 1951.51 1950.26 1961.06 1948.54 1944.31 

15 464 20 53.77 6020.1 5965.72 5815.22 6012.43 5901.2 5815.22 

16 480 22 20.01 1751.79 1743.32 1731.51 1752.65 1739.41 1731.51 

17 540 21 19.9 1821.1 1806.4 1806.4 1820.12 1809.48 1805.66 

18 600 24 54.44 7371.73 7281.34 7079.2 7308.06 7192.38 7079.2 

19 650 25 21.79 17961.17 17852.22 17815.1 17981.51 17788.81 17706.18 

20 700 27 20.65 1609.5 1602.77 1592.97 1609.72 1590.81 1592.8 

21 750 28 30.42 949.57 944.15 934.98 948.33 936.13 934.98 
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22 801 24 15.35 5709.72 5709.72 5709.72 5711.21 5689.05 5687.33 

23 875 26 44.85 3901.18 3901.18 3901.18 3909.94 3833.45 3803.03 

24 935 28 45.13 5399.95 5399.95 5399.95 5391 5324.51 5267.96 

25 985 29 50 973.37 973.37 973.37 970.33 956.48 948.69 

26 1000 30 43.46 435.8 431.47 424.53 436.18 426.27 424.53 

27 1050 28 7.34 4920.27 4922.92 4918.56 4920.27 4924.02 4917.36 

28 1075 29 55.27 15257.32 15257.32 15257.32 15191.14 15059.51 14869.12 

29 1100 30 56.79 1776.26 1762.95 1735.27 1785.47 1747.23 1735.27 

30 1130 31 58.68 1688.27 1673.08 1645.57 1680.42 1660.93 1645.13 

31 1159 33 39.2 11292.1 11292.1 11292.1 11266.26 11124.32 11096.6 

32 1185 33 13.17 9612.91 9612.91 9612.91 9612.8 9584.69 9584.02 

33 1200 34 36.52 9801.31 9757.74 9659.95 9787.55 9687.31 9659.95 

34 1250 35 13.56 12817.58 12810.78 12794.72 12815.32 12796.67 12782.76 

35 1250 36 50.81 5169.5 5141.16 5037.36 5167.72 5074.24 5037.36 

36 1285 37 48.99 11070.89 11070.89 11070.89 11109.99 10915.06 10809.4 

37 1310 38 50.51 11031.25 10920.33 10698.12 10999.15 10821.05 10698.12 

38 1375 39 4.55 7619.91 7619.91 7619.91 7619.91 7618.34 7613.32 

39 1450 40 40.71 7146.22 7092.18 7037.85 7143.26 7063.87 7037.85 

40 1500 41 6.7 5082.77 5079.24 5080.33 5082.76 5080.14 5077.73 

 

Table 8: Performance Measure for AVMur 

S. No. 

Configuration 

(n, m, CHetInx) 
Average Virtual Machine utilization ratio (AVMur) 

n m CHetInx MinMin TASA HAMM PTFR RSSM AHICS 

1 1050 28 7.34 0.9871 0.9861 0.9874 0.9871 0.9859 0.9876 

2 1185 33 13.17 0.985 0.985 0.985 0.9851 0.9882 0.9881 

3 1250 35 13.56 0.9848 0.9857 0.9868 0.985 0.9867 0.9876 

4 1375 39 4.55 0.9861 0.9861 0.9861 0.9861 0.9861 0.9868 

5 1500 41 6.7 0.9864 0.9872 0.9869 0.9864 0.987 0.9876 

6 1200 34 36.52 0.9727 0.9783 0.9911 0.9733 0.9868 0.9911 

7 1250 36 50.81 0.961 0.9727 0.999 0.9629 0.9888 0.999 

8 1285 37 48.99 0.967 0.967 0.967 0.9645 0.9875 0.9992 

9 1310 38 50.51 0.9548 0.974 0.9995 0.9613 0.984 0.9995 

10 1450 40 40.71 0.9677 0.9808 0.991 0.9685 0.9862 0.991 

 

Table 9: Performance Measure for DLIB 

S. No. 

Configuration 

(n, m, CHetInx) 
Degree of Load Imbalance (DLIB) 

n m CHetInx MinMin TASA HAMM PTFR RSSM AHICS 

1 1050 28 7.34 0.0271 0.0335 0.0266 0.0271 0.0329 0.0275 

2 1185 33 13.17 0.0379 0.0379 0.0379 0.0376 0.0291 0.0308 

3 1250 35 13.56 0.039 0.0349 0.0355 0.0386 0.033 0.0313 

4 1375 39 4.55 0.0286 0.0286 0.0286 0.0286 0.0289 0.0299 

5 1500 41 6.7 0.0311 0.0303 0.0298 0.0311 0.0322 0.0281 

6 1200 34 36.52 0.1043 0.0782 0.0495 0.1096 0.0469 0.0495 
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7 1250 36 50.81 0.1814 0.1086 0.0036 0.2315 0.046 0.0036 

8 1285 37 48.99 0.1327 0.1327 0.1327 0.1468 0.0265 0.003 

9 1310 38 50.51 0.2426 0.1402 0.0021 0.2323 0.053 0.0021 

10 1450 40 40.71 0.1879 0.1267 0.0538 0.1673 0.0788 0.0538 

 

Table 10: Performance Measure for SDVMct 

S. No. 

Configuration 

(n, m, CHetInx) 

Standard Deviation of Virtual Machine completion time (SDVMct)  

in msec 

n m CHetInx MinMin TASA HAMM PTFR RSSM AHICS 

1 1050 28 7.34 38.6535 40.9218 37.6535 38.6535 40.6168 37.9364 

2 1185 33 13.17 92.1933 92.1933 92.1933 91.7104 75.03 76.8312 

3 1250 35 13.56 130.2131 111.5994 104.6436 129.7273 104.1401 103.38 

4 1375 39 4.55 64.0872 64.0872 64.0872 64.0881 59.5385 61.2843 

5 1500 41 6.7 42.75 43.9576 40.736 42.7474 43.9518 39.3524 

6 1200 34 36.52 235.5662 171.3314 89.7608 251.3577 111.7352 89.7608 

7 1250 36 50.81 212.4574 110.8042 5.0402 214.4849 44.7738 5.0402 

8 1285 37 48.99 357.2741 357.2741 357.2741 351.9609 76.769 6.8925 

9 1310 38 50.51 512.5018 276.128 5.5658 446.9224 154.9083 5.5658 

10 1450 40 40.71 263.1339 161.4544 74.9475 241.2531 101.9347 74.9475 

 

Following this detailed analysis, Tables 11 and 12 present the average values of the aforementioned metrics, summarizing 

the overall performance of AHICS across both low (CLHetInx) and high (CHHetInx) combined heterogeneity index 

(CHetInx) cases. AHICS demonstrates enhanced performance across multiple metrics, such as makespan, VM utilization, 

degree of load imbalance, and the standard deviation of completion time among VMs. Table 13 shows the percentage 

improvement of AHICS compared to the other schedulers.  

 

Table 11: Performance Measures for CLHetInx Configurations 

S. No. Metrics 
Combined Low Heterogeneity Index (CLHetInx) Configurations 

Min-Min TASA HAMM PTFR RSSM AHICS 

1 MSSL 3390.686 3383.886 3380.627 3391.59 3376.846 3269.646 

2 AVMUR 0.930968 0.967176 0.9686 0.965324 0.972636 0.97616 

3 DLIB 0.083044 0.082812 0.076288 0.08228 0.065228 0.062752 

4 SDVMct 45.45103 42.59807 38.61237 44.46759 34.49734 34.11433 

 

Table 12: Performance Measures for CHHetInx Configurations 

S. No. Metrics 
Combined High Heterogeneity Index (CHHetInx) Configurations 

Min-Min TASA HAMM PTFR RSSM AHICS 

1 MSSL 4352.858 4334.504 4296.309 4345.759 4281.727 4145.666 

2 AVMUR 0.935588 0.945724 0.964224 0.938524 0.975252 0.988124 

3 DLIB 0.247868 0.236768 0.128712 0.255096 0.118004 0.041548 

4 SDVMct 198.7718 169.3082 97.89007 182.9269 68.47412 17.65003 

 

Reducing makespan is essential for faster cloudlet completion and minimizing waiting time. A smaller makespan allows 

the cloud system to process more tasks per unit of time, thereby increasing throughput. In time-sensitive applications like 

video streaming or online gaming, a low makespan is crucial to avoid delays. Additionally, reducing makespan can lead 

to more efficient resource utilization, reducing costs, and improving performance and user experience. Graphs 3 and 4, 

which depict the improved makespan (MSSL) performance of AHICS in both low and high combined heterogeneity cases 

(CHetInx), highlight its potential in cloud environments with diversity. 
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Table 13: Consolidated Performance Measures 

Schedulers 
Makespan (MSSL) Average VM utilization 

ratio (AVMur) 

Degree of Load 

Imbalance (DLIB) 

Standard Deviation of 

VM completion time 

(SDVMct) CLHetInx() CHHetInx CLHetInx CHHetInx CLHetInx CHHetInx CHHetInx CLHetInx 

MinMin 3.7 5 5.85 5.62 24.44 83.24 24.94 91.12 

TASA 3.49 4.56 1.93 4.48 24.22 82.45 19.92 89.58 

HAMM 3.39 3.63 1.78 2.48 17.74 67.72 11.65 81.97 

PTFR 3.73 4.83 1.12 5.28 23.73 83.71 23.28 90.35 

RSSM 3.28 3.28 1.36 1.32 3.8 64.79 1.11 74.22 

 

Figure 3: Makespan for CLHetInx   Figure 4: Makespan for CHHetInx 

 
Similarly, Graphs 5 and 6 depict the improved performance of AHICS in terms of VM utilization ratio (AVMur). 

Improved VM utilization results in reduced cost and energy consumption. 

Figure 5: AVMur for CLHetInx                                     Figure 6: AVMur for CHHetInx 

 
Graph 7 and 8 represents the performance of AHICS in measure of degree of load imbalance (DL IB). It ensures that 

cloudlets are distributed evenly across VMs, preventing bottlenecks and optimizing resource utilization. A balanced 

distribution of the workload helps maintain consistent performance for applications running in the cloud. 

Figure 7: DLIB for CLHetInx    Figure 8: DLIB for CHHetInx 

 
Graphs 9 and 10 depict the improved performance of AHICS in terms of standard deviation of completion time 

among VMs (SDVMct). It represents fairness in the treatment of VMs, with a smaller deviation indicating that all VMs 

are treated more equally.  



D Gritto., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 3 (2024) p.756-778 

 

 

 775 

The experimental results show that AHICS generally outperforms MinMin, TASA, HAMM, PTFR, and RSSM. 

While HAMM exhibit similar performance to AHICS in terms of makespan, AHICS consistently achieves better results 

in all simulation runs. The RSSM produces a nearly equal makespan only when the number of VMs is odd.  

Figure 9: SDVMct for CLHetInx    Figure 10: SDVMct for CHHetInx 

 
 

6.1 Statistical t-Test  

Pair-wise comparisons of the algorithms were conducted using a statistical t-test to evaluate the performance of 

the baseline AHICS algorithm against other algorithms. In a t-Test, a high t-value and a low p-value generally indicate a 

statistically significant difference between two groups. The statistical t-Test result is depicted in Table 13, with the t-

value and p-value. The results demonstrate that AHICS produces an improved makespan compared to the others. AHICS 

consistently outperformed MinMin, TASA, HAMM, PTFR, and RSSM, as evidenced by the statistically significant t-

Test results (MinMin: t=3.579, p=0.006; TASA: t=3.481, p=0.007; PTFR: t=3.626, p=0.006; RSSM: t=3.135, p=0.012). 

While there was no significant difference between AHICS and HAMM (t=1.121, p=0.291), AHICS consistently achieved 

a lower makespan than HAMM in all simulation runs. In real-time applications like gaming, financial transactions, or 

tasks with strict deadlines, even a few milliseconds of latency can be detrimental, and even small improvement in 

makespan can have a significant impact. AHICS additionally excelled in other three metrics. 

 

Table 13: Performance of AHICS based Statistical t-Test  

Treatment 1 

Algorithm 

Treatment 2 

Algorithm 

 

Mean 

Difference 

between pairs 

Sum of Squares t-statistics p-value 

MinMin AHICS 122.795 782,195,066.406 3.579 0.006 

TASA AHICS 79.063 779,348,718.769 3.481 0.007 

HAMM AHICS 12.132 777,358,234.702 1.121 0.291 

PTFR AHICS 119.365 782,245,224.142 3.626 0.006 

RSSM AHICS 40.568 777,230,430.891 3.135 0.012 

 

7. CONCLUSION 

The heterogeneity among cloudlets and VMs significantly impacts scheduling and overall cloud performance. This 

heterogeneity issue has not been addressed effectively in the literature. AHICS, a novel three-tier scheduling algorithm, 

effectively addresses this heterogeneity issues. AHICS dynamically selects between VMHS and MaxMin schedulers 

based on the CHetInx. AHICS consistently outperforms other heuristic schedulers like MinMin, TASA, HAMM, PTFR, 

and RSSM. All critical metrics considered were significantly improved. The reduction in makespan is crucial for real-

time cloud services as it results in reduced latency, improved response time, and throughput. The VM utilization ratio is 

crucial for cost savings and energy efficiency. Achieving a balanced workload distribution optimizes resource utilization, 

cost, and energy consumption. Minimizing the variation in completion time among VMs ensures fairness in resource 

utilization. This evaluation demonstrates the effectiveness and adaptability of AHICS in heterogeneous environments. 

While HAMM exhibit nearly comparable performance in terms of makespan, AHICS consistently achieves better results 

in all four measures, notably with lower time complexity. While AHICS demonstrates improved performance, cloud 

environments are inherently diverse, with varying workloads demands, and priorities. Some applications prioritize 

minimizing response time, while others focus on minimizing latency, maximizing throughput, or optimizing VM 

utilization, etc.  

To enhance its adaptability and performance, integrating ML and DQL within AHICS can be beneficial. By creating 

a dynamic heterogeneity estimator using ML, we can predict future heterogeneity levels based on historical data. This 

allows AHICS to proactively adjust its scheduling strategy, optimizing performance. DQL can learn optimal scheduling 

policies directly from experience. By interacting with the cloud environment, DQL can discover the best actions (VMHS 

or MaxMin) for different states (heterogeneity). Both ML and DQL can continuously learn and adapt to changing 

conditions. Adapting DQL ensures that AHICS remains effective in even dynamic cloud environments. 
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