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1. INTRODUCTION 

Heart diseases occasionally referred to as cardiovascular ailments, inflict harm upon the heart and its intricate 

network of blood vessels [1]. These afflictions serve as the primary culprits behind global morbidity and mortality 

rates, thus presenting a paramount concern for public health [2]. Their manifestations encompass a wide spectrum, 

ranging from irregular heart rhythms to perilous heart failure and conditions affecting the coronary arteries. To ensure a 

healthy heart and well-being, it is essential to have a thorough understanding of the risks, prevention methods, and 

treatment choices for heart disease [3]. 

Heart diseases include many circulatory and heart-related problems. Lifestyle, genetics, and health issues can cause 

these disorders [4]. Heart disease types must be understood for early detection, prevention, and individualized 

treatment. Electrocardiograms (ECGs) are basic medical tests that evaluate heart electrical activity [5]. This non-

invasive treatment records heartbeat by inserting arms, and electrodes on the chest, and legs [6]. The representation of 

captured impulses in the form of an ECG or EKG facilitates the identification of arrhythmias, myocardial infarctions, 

and various other heart conditions that impact cardiac functionality [7]. Figure 2 below shows the most popular heart 

disease. 

 
FIGURE 1. Most common known and popular Heart Diseases. 
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The figure above shows the most Common, popular heart diseases diagnosed using ECG include arrhythmia, atrial 

fibrillation, myocardial infarction, heart failure, congenital heart defects, and hypertrophic cardiomyopathy. 

Arrhythmias cause abnormal heart rhythms, atrial fibrillation erratic beats, myocardial infarctions that cut off blood 

supply, heart failure occurs when the heart cannot pump blood effectively, and hypertrophic cardiomyopathy is a 

genetic condition causing thicker blood [8]. 

ML and DL have changed ECG by enhancing ECG analysis accuracy and efficiency. These progressed innovations 

offer assistance to healthcare experts analyze heart conditions and screening patients' cardiovascular well-being by 

preparing machine learning calculations to recognize designs, peculiarities, and particular cardiac variations from the 

norm in ECG information. DL, a subtype of ML, handles complex ECG data well. DNN may automatically detect tiny 

ECG waveform anomalies that human interpreters may miss [9].  

This audit thing about centers on the inquiry about that has investigated the improvement of computer program 

applications or IoT gadgets to identify heart malady. It particularly looks at the utilize of AI procedures and 

calculations in programming and planning these frameworks. Moment segment of the term paper will talk about fake 

intelligence's pivotal part in heart illness location. In differentiate, the third area incorporates a talk of past ponders with 

a point-by-point table. The conclusions of the research studies are illustrated within the fourth segment. Figure 1 

demonstrates the essential components of an electrocardiogram (ECG) incorporating the P wave, QRS complex, and T 

wave. Figure (1) demonstrates the essential components of an electrocardiogram (ECG) incorporate the P wave, QRS 

complex, and T wave. 

 
FIGURE  2. - Essential components of an ECG incorporate the P wave, QRS complex, and T wave 

 

2. ARTIFICIAL INTELLIGENCE'S ROLE IN HEART DISEASE DETECTION 
 

DL, particularly fake insights (AI), comes up short of playing any part in changing the location and determination 

of heart maladies [10]. With the utilization of effective DL calculations, the field of cardiovascular healthcare is right 

now encountering a groundbreaking move, permitting for the more exact and opportune distinguishing proof of heart-

related conditions [11]. Here's an in-depth investigation of how DL particularly is instrumental in this respect. 

DL investigation plays an essential part in the early location and assessment of potential dangers. The capability of 

DL calculations in analyzing broad Electronic Wellbeing Records (EHR), persistent histories, and therapeutic imaging 

datasets is unparalleled [12]. This exceptional capability permits healthcare specialists to pinpoint minor hazard 

variables that ordinary evaluations regularly ignore, much obliged to their fitness in recognizing perplexing designs and 

associations. Through nitty gritty information investigation, DL makes a difference clinicians anticipate heart illness 

hazard early and more precisely, moreover exactness conclusion, DL calculations exceed expectations in deciphering 

ECGs, which are basic for heart infection conclusion. These calculations can identify unobtrusive ECG waveform 

inconsistencies that people may miss. This accuracy speeds up conclusion and is significant in circumstances like heart 

assaults [13]. 

Magnetic Reverberation Imaging (MRI) and Computed Tomography (CT) examinations give important bits of 

knowledge into cardiac well-being [14]. Picture investigation program based on DL can identify auxiliary variations 

from the norm, evaluate cardiac work, and help cardiologists identify blockages and vascular issues [15]. This degree 

of exactness increments demonstrative certainty and illuminates’ treatment procedures. 
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Wearable contraptions and portable applications for ceaseless heart wellbeing observing are fueled by DL [16]. 

These gadgets are competent of observing imperative signs, identifying sporadic heart rhythms, and sending real-time 

alarms to patients and healthcare staff [17]. This proactive approach to remote monitoring allows for early action and 

decreases the possibility of undesirable occurrences. 

Deep learning aids in the development of the most effective treatment solutions for people suffering from heart 

disease, and offers individualized treatment strategies, including drug choices and surgical treatments, to enhance 

patient results by analyzing large databases of treatment outcomes [18]. These systems streamline healthcare operations 

by automating routine tasks, thus freeing up healthcare professionals to focus on direct patient care. This increased 

efficiency not only expedites diagnoses but also leads to cost savings and improved patient outcomes [19]. 

The goal of data-driven machine learning is shared by deep learning and machine learning. Unlike deep learning, 

machine learning employs DNN to immediately extract hierarchical characteristics from the input [20]. These deep 

neural networks were inspired by the shape and functions of the human brain.  

Figure (3) demonstrates the relationship between deep learning and machine learning which serves as a driving 

force in the detection and management of heart diseases. Its capacity to analyze large-scale data, make highly accurate 

predictions, and offer personalized insights is reshaping the approach to cardiovascular care. As deep learning 

continues to advance, it holds the potential not only to enhance diagnostics but also to prevent heart diseases 

proactively, ultimately promoting better heart health for individuals and populations [21]. Table 4 shows a Comparison 

between AI technologies in heart disease detection and classification. 

Deep learning models have been used to predict patient outcomes, diagnose diseases, personalize treatment plans, 

classify medical images, segment and detect anomalies in medical images, and automate disease detection in radiology. 

For instance, a deep learning model called "Deep Patient" can predict the onset of several diseases by identifying 

hidden patterns in EHR data. DL techniques have also been instrumental in image classification, segmentation, and 

detection, with CNNs showing remarkable accuracy in skin cancer classification [22], and [23]. 

 

FIGURE  3. - The relation AI with ML & DL. 

 

3. DATASETS 

In this section, will be explained the variate types of datasets used in this field, in addition to a brief description of 

them and an indication of whether they are available online for free or not. Table 1 illustrates descriptions of heart 

disease datasets. 

TABLE  1. - Datasets Used in Previous Studies 

Ref. 
Dataset 

Name 
Description 

No. of 

Records 

Types of 

Annotations 
Free 

1 MIT-BIH 

The MIT-BIH Arrhythmia Database is a widely used 

dataset for ECG analysis algorithms, containing 

recordings of arrhythmias and normal rhythms. It 

benchmarks and evaluates ECG signal processing and 

analysis methods, including deep learning. 

Researchers like Benjamin A. Teplitzky, Michael 

McRoberts, and Hamid Ghanbari may have utilized 

N/A 
Arrhythmias 

and anomalies 
yes 
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this dataset for "DL for comprehensive ECG 

annotation." They preprocess ECG signals using 

wavelet transforms or CNN and train DL models to 

classify arrhythmias and anomalies. The dataset is 

divided into training, validation, and testing sets for 

accurate assessment. 

4 
PTB-XL 

 

This collection of data is an extensive and easily 

accessible ECG dataset that is commonly employed 

for research purposes, particularly in the area of 

identifying and diagnosing cardiovascular diseases. 

The PTB-XL dataset is an expansion of the PTB 

Diagnostic ECG Database, consisting of a 

significantly greater quantity of ECG recordings. It 

hinders the progress and evaluation of algorithms for 

automated ECG analysis, encompassing tasks such as 

identifying arrhythmias, detecting ischemia, and much 

more. 

N/A 

Arrhythmias, 

ischemia, and 

more  

available 

4 
TIS 

 

The TIS dataset is a massive, private set of ECG 

information from many different hospitals. It is not 

open to the public, but it has been used in several 

types of ECG classification studies. The dataset is said 

to have more than 100,000 ECG records, and it has 

labels for different heart illnesses and arrhythmias 

100,000+ 

Heart illnesses 

and 

arrhythmias 

Not 

available 

7 HMHF 

The Human Connectome Project (HCP) collected a 

nonparametric local back estimator of spatially 

arrayed microtiter plate (MTP) data from 181 healthy 

young people. The dataset, which used ultra-high-field 

(7 Tesla) fMRI retinotopic mapping, found strong 

signals in various brain regions. The analysis's 

findings matched previously released parcellations of 

visual regions. The dataset allows for fine-scale 

examination of individual variability in cortical and 

subcortical architecture and can be compared to other 

HCP metrics from the same subjects. 

181 

Cortical and 

subcortical 

architecture 

Not 

available 

7 PhysioNet 
contains ECG signals from 2,100 patients with 

different arrhythmias. 
2100 Arrhythmias Available 

 
From the above table, the deep learning models' effectiveness in ECG analysis and heart disease classification 

relies on the quality and diversity of datasets used. Each dataset contributes uniquely to the field, providing benchmark 

standards, large-scale training data, and supporting the study of complex neural-cardiac interactions. The collective use 

of these datasets enhances the accuracy, reliability, and generalizability of DL algorithms, ultimately improving patient 

outcomes and clinical practice. 

 

4. LITERATURE REVIEW  

This section of the paper illustrates some studies, research, papers, and articles that present some of the latest in the 

cardio-vascular category where deep learning and machine learning, which are parts of AI as shown in figure (3), take 

the major place and tasks. Such applications’ usage is rapidly increasing and become some of the most important 

software that may rises human efficiency and reduces errors due to repetition, duplication, complications, and work 

compressions. 

[24] proposed a two-dimensional 2D-CNN model to classify ECG signals into eight classes: normal beat, 

premature ventricular contraction beat, paced beat, right and left bundle branch block beat, atrial premature contraction 

beat, ventricular flutter wave beat, and ventricular escape beat. 1D-ECG time series signals are turned into 2-D 

spectrograms via a short-time Fourier transform. The 2D-CNN model with four convolutional and four pooling layers 

extracts robust features from input spectrograms. The technique is tested on the public MIT-BIH arrhythmia dataset. 

obtained a state-of-the-art average classification accuracy of 99.11%, better than recent findings in classifying 

comparable arrhythmias. 

[25] introduced an Enhanced Deep learning-assisted Convolutional Neural Network (ED-CNN) has been proposed 

to improve heart disease patient prognostics. The deeper architecture of the ED-CNN model encompasses the multi-
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layer perceptron with regularization learning. Thus, reducing features influences classifier processing time and 

accuracy, which has been quantitatively studied using test data. The Internet of Medical Things Platform (IoMT) has 

deployed the ED-CNN system for decision support systems to help clinicians diagnose heart patients' information in 

cloud platforms worldwide. The test results show that the designed diagnostic system can efficiently determine heart 

disease risk compared to conventional approaches like Artificial Neural Network (ANN), DNN, Ensemble Deep 

Learning-Based Smart Healthcare System (EDL-SHS), Recurrent Neural Network (RNN), and Neural Network 

Ensemble method (NNE). Tests indicate that a flexible design and tuning of ED-CNN hyper-parameters can reach up to 

99.1% precision. 

[26] introduced an authentication system that is dependent on the context of wearable devices. This system makes 

use of soft-biometric data such as heart rate, gait, and breathing audio signals, and can achieve a high level of accuracy 

through the utilization of a k-Nearest Neighbor model (KNN). The primary objective of this system is to address the 

need for an implicit authentication mechanism that does not impose any additional burden on the user. This is 

particularly relevant as wearables become increasingly integral to our daily lives and hold a wide range of confidential 

user information. 

[27] proposed a CNN-based method for classifying ECG arrhythmias, including supra-ventricular ectopic, non-

ectopic, fusion, ventricular ectopic, and unknown beat arrhythmias, based on the AAMI EC57 standard, and evaluated 

this approach on the SVEB and VEB from the MIT-BIH arrhythmia database. The suggested technique achieved 

extremely high accuracy, sensitivity, specificity, and positive prediction rate across all samples. 

[28] An ECG signal classification is suggested in this paper. Classifying cardiac arrhythmias using two deep-

learning bagging models. CNN and LSTM networks detect local properties and temporal dynamics in ECG data in the 

first model. This model employs LSTM and classical features like RR intervals and Higher-Order Statistics (HOS) to 

identify abnormal heartbeat classes. Created a CNN-LSTM and RRHOS-LSTM bagging model by training each model 

on a separate sub-sampling dataset to address ECG data's high imbalance distribution of arrhythmia classes. Testing the 

suggested approach on MIT-BIH arrhythmia database ECG data yields experimental results. Subject-oriented patient-

independent evaluation yields 95.81% accuracy using the proposed method. The F1 score and positive predictive value 

averages are over 3% and 8% higher than other methods. Experimental results show the proposed ECG method is 

better. 

 [29] introduced an Automatic primary ECG signal classification was achieved with a deep neural network. The 

research used PTB-XL data. One neural network architecture was based on the convolutional network, the second on 

SincNet, and the third on the convolutional network with entropy-based features. Training, validation, and test sets 

comprised 70%, 15%, and 15% of the dataset. The entropy-featured convolutional network achieved the best 

classification results among the investigations that covered 2, 5, and 20 illness classes, while the convolutional network 

without entropy-based features had lower performance but higher computing efficiency due to its smaller number of 

neurons. 

 [30] developed a DL-based model that can automatically detect common ECG abnormalities using feature 

extraction, decision-making, and lead subset selection, and tested it on a total of 10,875 ECG recordings from two 

different datasets, CPSC 2018 and PhysioNet/CinC-2020. The proposed model incorporated a module for selecting 

subsets of ECG leads to simplify the process, resulting in an optimal 4-lead ECG subset of II, aVR, V1, and V4, which 

proved to be favored by the validation set and external test dataset compared to the 12-lead ECG model, thus improving 

the generalization of the DL model's interpretation of ECG abnormalities. 

[31], a traditional learning model, which was not automated, was created to slightly enhance the classification of 

1D-ECG signals in order to diagnose cardiovascular disease; the model achieved average performance in terms of 

accuracy, sensitivity, specificity, and other evaluation metrics by utilizing a shallow neural network for feature 

extraction and a basic optimization algorithm for hyper-parameter tuning, while also avoiding preprocessing, feature 

extraction, and hyper-parameter tuning, and using a small dataset for evaluation. 

[32], the DLGRU-ELM model is an innovative fusion of DL, GRU, and ELM methodologies that effectively 

identifies ECG signals. Meanwhile, the CIGRU-ELM model showcases remarkable precision, sensitivity, specificity, 

kappa, Mathew correlation coefficient, and Hamming loss due to its multi-step strategy encompassing preprocessing, 

data sampling, GRU-driven feature extraction, and ELM-powered classification. 

[33], The implementation of AI in the analysis of the ECG has completely transformed the field of cardiovascular 

medicine by enabling fast and precise interpretation of the ECG. It possesses the capability to identify patterns that 

exceed the abilities of human interpreters and offers non-intrusive biomarkers for diverse cardiovascular conditions. 

The incorporation of AI in ECG phenotype analysis holds immense importance in identifying cardiovascular disease in 

high-risk populations, making clinical decisions, and advancing mobile and wearable ECG technologies. 

[34], introduced a disease-aware generative adversarial network for multi-view ECG synthesis, which obtains 

panoptic electro-cardio representations conditioned on heart illnesses and projects them onto several standard views to 

generate ECG signals. View discriminators supervise the generator to produce ECGs with correct view characteristics 

by reverting disordered ECG views into a specified order. A novel metric, RELATIVE FRÉCHET INCEPTION 

DISTANCE rFID, is provided to evaluate synthesized ECG signals. Comprehensive investigations show that ME-GAN 

performs well on multi-view ECG signal synthesis with reliable pathological symptoms (rFID = 15.282). 
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[35] The decision to utilize deep learning for the categorization of Atrial Fibrillation in ECG signals was induced 

by its exceptional performance, surpassing that of traditional machine learning methods with an outstanding 10% 

increase in accuracy. This study focused on developing an efficient application utilizing a 1D Convolutional Neural 

Network (1D CNN) approach, experimenting with different model setups, particularly focusing on learning rate and 

batch size. The outcome resulted in a highly successful model achieving exceptional accuracy, precision, recall, and F1 

Score, all reaching an impressive 100%. 

[36], deep neural networks should be trained on a diverse array of datasets and then refined on a particular dataset 

to enhance their capacity to classify ECG signals, as demonstrated by the authors' research using three datasets (TIS, 

PTB-XL, and PTB-S), resulting in a 92.5% accuracy rate and improved generalization abilities. 

 [37] proposed The Sentinel-HF experiment used ECG and trans-thoracic bio-impedance data from hospitalized 

21-year-olds (Adults) with Heart failure or ADHF symptoms. ECGX-Net, a deep cross-modal feature learning pipeline, 

predicts ADHF using raw ECG time series and wearable trans-thoracic bio-impedance data. We transferred ECG time 

data into 2D images using transfer learning, then retrieve important data exists in rich features using ImageNet-pre-

trained DenseNet121/VGG19 models. ECG and trans-thoracic bio-impedance retreat cross-modal feature learning after 

data filtering. Concatenated DenseNet121/VGG19 and regression features to train a Support Vector Machine (SVM) 

without bio-impedance. The high-precision ECGX-Net classifier predicted ADHF with 94% precision, 79% recall, and 

0.85 F1-score. The high-recall classifier with only DenseNet121 had 80% precision, 98% recall, and 0.88 F1-score. 

DenseNet121 excelled in high-recall classification, while ECGX-Net excelled in precision. 

[38] The study involved analyzing 26,464 single-lead ECGs, with three physician readers retrospectively assessing 

the available 7-second ECGs. The CNN algorithm demonstrated high accuracy in diagnosing shockable rhythms, with a 

sensitivity of 98%, specificity of 100%, and a total processing time of 7.383 seconds. CNN has done an excellent job in 

classifying atrial arrhythmias as non-shockable, surpassing adjudicators with a specificity of 99.3%-98.1%. In addition, 

it has demonstrated remarkable resilience to noise artifacts, showcasing an impressive range of 0.871-0.999 in the area 

under the receiver operating characteristic curve. This demonstrates CNN's reliability and effectiveness in its 

performance. 

[39] the use of integrated dense and residual blocks in CNNs provides several advantages, such as enhancing 

information flow, gradient propagation, and feature reuse, resulting in improved model performance. Additionally, 

incorporating customizable pooling layers and residual-dense blocks in the recommended model enables effective 

down-sampling. De-noising ECG data addresses issues like baseline drift, power line interference, and motion noise 

while re-sampling ECG signals helps to mitigate class imbalance for the LSVMs. The properties are used to 

characterize cardiac ECG data using an RD-CNN method and conducted thorough simulations and performance tests 

on two benchmarked datasets. Average 98.5% accuracy, 97.6% sensitivity, 96.8% specificity, and 0.99 AUC. 

Compared to modern algorithms, the proposed ECG-based heart disease detection method proved more effective. 

[40] developed a residual-dense-based Convolutional Neural Network (RNCNN) algorithm to classify the heart 

disease in the MIT-BIH dataset. Their system achieved 98.5% accuracy, 96.8% specificity, and 97.6% sensitivity 

(recall). This paper applied the suggested system on (CSV) dataset based on ECG signal.  

[41] classified the ECG signals based on Dual-Path Recurrent Neural Network (DPRNN) algorithm. The authors 

trained and tested their method on PhysioNet Challenge 2017 dataset. The results achieved were 97.1% accuracy and 

95.3% an F1 score. 

[42] introduced high level framework utilizing time series derivative analysis. The authors evaluated the ECG 

signaled based on Local model agnostic. The MIT-BIM arrhythmia dataset was used to trained and test the proposed 

system. The detection results based on this method was statistically significant differences (N = 59, p-value =0.028, 

H=9.12) regarding the perceived typicalness across the different kinds of heartbeat. 

[43] introduced the DNN algorithm to accurately the label ECG signals dataset for Hennepin County Medical 

Center (HCMC) from Jan. 2013 through June 2016. The proposed system results were Accuracy = 92.2% and 

Specificity = 94% 

Table (2) presents a tabular comparative analysis of prior investigations about the detection of cardiac pathology 

within the context of ECG examinations. 

[44] the authors introduced CNN - ResNet1D50 Tatarstan, collected via a telemedicine system and annotated by 

over 200 doctors This paper highlights the need for non-architectural enhancements in ECG classification models, 

including patient metadata, noise reduction techniques, and self-adaptive learning, to improve classification accuracy.

 For the result values, the paper does not appear. 

[45] pseudo-colouring to determine QT-interval length and detect QT-prolongation at risk of TdP were 

development. The dataset used in this study comprised 5050 ECGs with variable QT intervals at varying heart rates. 

The study primarily focused on detecting QT-prolongation at risk of TdP but did not explore the utility of pseudo-

colour heuristics for other ECG abnormalities like electrolyte imbalances or ST-segment changes. Additionally, further 

usability evaluations with diverse clinical populations are necessary to validate the technique's clinical utility. The 

results were an Accuracy = 97%, Sensitivity (recall) = 94%, Specificity = 99%, F1 score = 88%, AUC = 98%, 

Precision = 88%, Matthew’s correlation coefficient (MCC) = 88% The error rate = 0.01. 
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TABLE  2. - Previous Studies Comparison Table. 

Ref. Method Dataset Research Gap Results HW/SW 

Dataset 

type 

[24] 2D-CNN (Native, 

Augmentation) 

MIT-BIH  Explore the effect of different 

hyper-parameters on model 

performance, such as 

different window lengths or 

different types of 

optimization tools. 

Accuracy 

Augmented = 

99.11% 

Native = 98.92% 

Sensitivity  

Augmented = 

97.91% 

Native = 97.21% 

Specificity  

Augmented = 

99.61% 

Native = 99.67% 

Precision 

Augmented = 

98.85% 

Native = 98.69% 

F1 Score 

Augmented = 

0.98 

Native = 0.98  

SW  

Signal  

[25] Integrated Deep 

Learning Model 

with CNN 

IDLM-CNN 

The authors utilized 

various datasets 

including lung images, 

diabetic datasets, and 

clinical datasets for 

heart disease prediction 

There was a research gap in 

the accuracy of predicting 

heart disease despite the 

availability of numerous 

techniques in the existing 

literature. So, by combining 

features from diverse datasets 

and training them with 

(IDLM-CNN), the model 

seeks to enhance disease 

prediction accuracy, 

highlighting a gap in current 

methods for heart disease 

prediction.  

Accuracy = 88% 

for Bradycardia, 

93% for 

Tachycardia, and 

98% for 

Myocardia. 

SW 

Signal 

and 

images 

[26] A scheme for 

authenticating 

wearable users is 

proposed. Machine 

learning is used to 

model and identify 

wearable users. 

The analysis involved 

the utilization of three 

distinct datasets. The 

dataset contained a 

restricted quantity of 

audio clips depicting 

breathing. 

Limited investigation on 

specific AI applications and 

decision support systems. 

Lack of focus on the usability 

and added value of AI 

applications 

The model's 

precision 0.93, F1 

score 0.93, 

SW  

Signal  

[27] K-Nearest 

Neighbor (KNN) 

with k=2 

The study uses three 

datasets: heart rate data 

from the Fitbit Charge 

HR collected at one 

sample per minute 

during different activity 

levels, gait data from the 

WISDM dataset with 

linear and angular 

accelerometer readings, 

and breathing audio 

clips from the ESC-50 

dataset that Sampled at 

22.05 kHz. 

The primary research gap 

identified in this paper is the 

limited size of the dataset, 

particularly the small number 

of vocal breathing clips, and 

the use of only three subjects 

for validation, which requires 

further research using larger, 

more diverse datasets and 

extended study periods for 

user integration. 

accuracy of 

0.93±0.06, F1 

score of 

0.93±0.03 and a 

false positive rate 

(FPR) below 0.08 

at a 50% 

confidence level. 

HW 

signal 
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[28] (GAN) 

 

 (LSTM) 

MIT-BIH arrhythmia 

dataset  

PTB-ECG dataset 

Literature on HD detection 

from ECG samples mainly 

uses conventional ML 

techniques, with few using 

the DL approach for feature 

extraction and classification. 

DL-based methods perform 

better than ML classifiers, 

especially for imbalanced 

data. Ensemble models offer 

better detection performance, 

but research gaps need to be 

addressed for reliable HD 

classification. 

For MIT-BIH 

dataset 

Accuracy = 0.992 

F1-Score = 0.987 

AUC = 0.984 

For PTB-ECG 

dataset 

Accuracy = 0.994 

F1-Score = 0.993 

AUC = 0.995 

SW 

Signals  

[29] CNN-LSTM  

and  

RRHOS-LSTM 

MIT-BIH Arrhythmia 

Database 

The research gap in 

managing the imbalanced 

distribution of arrhythmia 

classes in ECG data, 

highlights the need for 

effective methods and AAMI 

recommendations. 

Accuracy for all = 

95.81% 

Class N 

Sensitivity = 

98.03% 

Class SVEB 

sensitivity and 

specificity = 

56.51% and 

98.56% 

Class VEB 

sensitivity and 

specificity 

=93.91% and 

99.62% 

Class N 

sensitivity and 

specificity =19.33 

and 99.79% 

SW  

Signals 

[30] DNN 

CNN 

PTB-XL the under-explored utilization 

of entropy-based features 

during Deep Neural Network 

(DNN) inference in ECG 

signal classification, despite 

their established use in other 

machine learning algorithms 

like XGBoost 

accuracy of 90.0 

± 0.4 for 2-class, 

76.2 ± 1.8 for 5-

class, and 68.5 ± 

1.3 for 20-class 

classification 

tasks 

F1 score was 

90.0 ± 0.5 for 2-

class, 68.3 ± 2.4 

for 5-class, and 

34.1 ± 2.0 for 20-

class 

classification 

tasks 

SW 

Signal  

[31] Feed-Forward 

neural network 

(Decision Making 

classifier) 

The CPSC 2018 dataset 

consists of 6877 12-lead 

ECG recordings, while 

the PhysioNetCinC 

2020 dataset includes 

3998 12-lead ECG 

records, both sampled at 

500 Hz 

The lack of an optimal ECG-

lead subset selection method 

tailored to deep learning 

models, which can 

effectively reduce diagnostic 

redundancy and improve the 

generalization of ECG 

abnormality classification 

systems 

F1 score = 0.802 SW 

Signals 

[32] DLECG-CVD-

based Boosting 

PTB-XL Despite advancements in AI 

for medical imaging, the 

Accuracy = 

88.24% 

SW 

Signals  
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(XGBoost) 

classifier 

automatic classification of 

1D ECG signals remains 

challenging due to their time-

varying dynamics and diverse 

profiles. 

Sensitivity = 

93.63% 

Specificity = 

61.37% 

Precision = 

88.35% 

[33] 1D-CNN MIT-BIH Arrhythmia 

Dataset  

PTB Diagnostic ECG 

Database 

PhysioNet Computing in 

Cardiology 

AI integration in cardiac 

disease diagnosis faces 

challenges in data 

heterogeneity, model 

interpretability, real-time 

application, large, annotated 

datasets, and imbalanced data 

handling, necessitating 

further research. 

Accuracy = 0.971 

F1 score = 0.953 

SW 

Signals 

and 

images  

[34] CNN half a million digitally 

stored ECGs from 

126,526 patients at the 

Mayo Clinic ECG lab 

Detecting silent AF using a 

convolutional neural network 

(CNN) model 

For detecting 

asymptomatic 

LVEF 

AUC = 0.93 

Sensitivity = 

86.3% 

Specificity = 

85.7% 

For detecting 

significant AS 

AUC = 0.884 

Sensitivity = 

80.0% 

Specificity = 

81.4% 

SW 

Signals  

[35] ME-GAN Tianchi ECG dataset 

PTB 

Previous ECG generative 

methods limited clinical 

utility by synthesizing single-

view data or independently 

generating different views 

without considering view 

correlations and failing to 

integrate disease information 

or separate models for 

different heart diseases. 

PR-AUC = 0.902 SW 

Signal  

[36] 1D CNN with 

BiLSTM 

MIMIC PERform 

dataset 

A notable research gap 

identified in this paper is the 

under-exploration of 

transporter PPG waveform 

data for atrial fibrillation 

detection. While most studies 

focus on reflective PPG 

techniques, transmissive PPG 

offers deeper cardiovascular 

insights and may enhance AF 

detection accuracy, 

warranting further 

investigation 

Accuracy = 95% 

Precision 88% 

Recall = 85% 

AUC = 99% 

SW 

Signal  

[37] DNN  PTB-XL The generalization of deep 

neural networks (DNNs) 

across different datasets 

remains underexplored due to 

the lack of large, diverse 

training data from multiple 

sources 

Sensitivity = 

0.941 

Specificity = 

0.966 

SW 

Signals 
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[38] SVM  The dataset used 

includes 1318 ECG 

recordings from 37 

different volunteers 

Previous studies primarily 

focused on classifying known 

ECG patterns in controlled 

clinical settings, not fully 

leveraging deep learning's 

potential to learn features 

directly from raw data 

ECGX-Net 

predicted ADHF 

Precision = 94% 

Recall = 79% 

F1 score = 85% 

The high-recall 

classifier with 

only 

DenseNet121 

Precision = 80% 

Recall = 98% 

F1 score = 88% 

SW  

Signal  

[39] CNN The dataset comprised 

26,464 single-lead 

ECGs, with 1,582 

excluded due to inter-

reader disagreement, 

resulting in 23,156 

ECGs for training, 721 

for validation, and 1,005 

for testing. 

The study's generalization 

was impacted by not 

estimating individual 

rhythms, limiting prevalence-

dependent analyses, and not 

comparing the algorithm's 

performance with 

commercially available 

AEDs or CNNs. 

AUC-ROC = 

95% 

Sensitivity = 98% 

Specificity = 

100%  

F1-score = 99.5% 

SW  

Signals  

[40] Residual-Dense 

Convolutional 

Neural Network 

(RD-CNN) with 

linear support 

vector machine 

(LSVM) 

MIT-BIH The primary research gap 

identified is the challenge of 

effectively recognizing 

certain heartbeat categories, 

particularly in unbalanced 

datasets, which existing ECG 

heartbeat classification 

methods have not 

successfully addressed with 

high performance. 

Accuracy = 

98.5% 

Sensitivity = 

97.6% 

Specificity = 

96.8% 

AUC = 99% 

SW  

Signals  

[41] dual-path recurrent 

neural network 

(DPRNN) 

PhysioNet Challenge 

2017 dataset 

China Physiological 

Signal Challenge 

(CPSC) 2018 dataset 

AF detection methods are 

limited by specialized 

equipment and technical 

expertise, with dataset 

challenges like small scale, 

class imbalance, unclear class 

definitions, and variable ECG 

lengths increasing model 

training complexity. 

Accuracy = 0.971 

F1 score = 0.953 

SW  

Signal  

[42] explainable 

artificial 

intelligence (XAI), 

including SHapley 

Additive 

exPlanations 

(SHAP) and Local 

Interpretable 

Model-agnostic 

Explanations 

(LIME) 

MIT-BIH The study aims to address the 

gap in Explainable Artificial 

Intelligence (XAI) research 

by developing and validating 

methods specifically for time 

series data, specifically using 

the MIT-BIH Arrhythmia 

dataset, despite the growing 

interest in XAI in the clinical 

domain. 

N = 59, p-value 

=0.028, H=9.12 

SW  

Signal  

[43] Deep neural 

network (DNN) 

The dataset used in the 

study comprised 1,500 

ECGs sampled 

randomly from a pool of 

30,000 ECGs for testing, 

and 5,000 ECGs from 

Mortara's device 

selected out of 80,000 

The study highlights research 

gaps in ECG interpretation, 

including the need for a 

standardized reference, the 

low prevalence of certain 

pathologies, and the inability 

to compare Cardiology' 

performance with other 

Accuracy = 

92.2% 

Specificity = 94% 

SW 

Signal  
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possible ECGs for 

training. 

proprietary algorithms due to 

access limitations. 

[44] CNN - 

ResNet1D50  

Tatarstan, collected via a 

telemedicine system and 

annotated by over 200 

doctors 

This paper highlights the 

need for non-architectural 

enhancements in ECG 

classification models, 

including patient metadata, 

noise reduction techniques, 

and self-adaptive learning, to 

improve classification 

accuracy. 

Not remember SW 

Signal 

[45] pseudo-colouring 

to determine QT-

interval length and 

detect QT-

prolongation at risk 

of TdP 

The dataset used in this 

study comprised 5050 

ECGs with variable QT-

intervals at varying heart 

rates.  

The study primarily focused 

on detecting QT-prolongation 

at risk of TdP, but did not 

explore the utility of pseudo-

colour heuristics for other 

ECG abnormalities like 

electrolyte imbalances or ST-

segment changes. 

Additionally, further usability 

evaluations with diverse 

clinical populations are 

necessary to validate the 

technique's clinical utility 

Accuracy = 97% 

Sensitivity = 94% 

Specificity = 99% 

F1 score = 88% 

AUC = 98% 

Precision recall = 

88% 

Matthew’s 

correlation 

coefficient 

(MCC) = 88% 

The error rate = 

0.01 

SW 

Signal  

 

Convolutional Neural Networks (CNNs) have been widely used in ECG classification, with studies demonstrating 

their robustness and accuracy. Two studies proposed a 2D-CNN model for classifying ECG signals into eight classes 

using the MIT-BIH Arrhythmia Database, achieving an average classification accuracy of 99.11%. Another study 

introduced a CNN-based method for classifying ECG arrhythmias, achieving high accuracy, sensitivity, specificity, and 

positive prediction rate. A Residual-Dense Convolutional Neural Network (RD-CNN) with linear SVM was developed, 

achieving an accuracy of 98.5%. Enhanced Deep Learning Models were also proposed, with an ED-CNN for heart 

disease prognosis achieving up to 99.1% precision. Hybrid models that combine CNNs with LSTMs or other neural 

network types can capture both spatial and temporal features, leading to enhanced performance in ECG analysis. GANs 

were introduced for multi-view ECG synthesis, achieving an rFID of 15.282. However, there are weaknesses in these 

models, such as limited dataset diversity, computational complexity, and lack of real-world testing. Recent studies 

continue to explore and refine DL models for ECG analysis, such as deep cross-modal feature learning pipelines for 

predicting ADHF, explainable AI methods for time series data using SHAP and LIME, and novel metrics like pseudo-

colouring for detecting QT-prolongation. These advancements demonstrate the potential of CNNs in ECG classification 

and the potential of hybrid models and GANs in improving model robustness. 

5. RESEARCH METHODOLOGY  

This section consider embraces a comprehensive audit technique to assess the integration of DL advances within 

the improvement of ECG per  users and cardiology classifiers. The strategy is organized as appeared within the taking 

after the following Figure 3, which demonstrates the methodology for the current review: - 
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FIGURE  4. – The methodology adopted in the research  

The above figure illustrates the following sections for this review paper 

1. Literature Review: the databases that are searched in PubMed, IEEE Xplore, Google Scholar, and Science 

Direct. 

2. Selection Criteria:  

• Inclusion: DL in ECG analysis/heart disease diagnosis, English, peer-reviewed, empirical studies. 

• Exclusion: Non-empirical, unrelated to ECG/heart disease, older than ten years (unless seminal). 

3. Data Extraction: Extracted Information: DL model type, dataset used, study outcomes, limitations noted. 

The research methodology for the current review paper is step-by-step methodology:  

1. Data Collection 

o Sources: The data collection involved searching through databases such as PubMed, IEEE Xplore, 

Google Scholar, and Science Direct. 

o Search Strategy: Keywords used included "Deep Learning in ECG analysis," "heart disease diagnosis," 

"ECG classification," and "AI in cardiovascular studies." 

o Inclusion Criteria: Studies were selected based on relevance to DL in ECG analysis or heart disease 

diagnosis, publication in English, peer-reviewed status, and empirical evidence. 

o Exclusion Criteria: Non-empirical opinion pieces, studies unrelated to ECG/heart disease, and 

publications older than ten years (unless seminal) were excluded. 

2. Preprocessing 

o Data Cleaning: Ensured all selected studies met the inclusion criteria. Removed duplicates and irrelevant 

studies. 
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o Standardization: Converted all relevant data to a standard format for easy comparison. This included 

normalizing data types and ensuring consistent terminology. 

3. Model Selection 

o Criteria: Selection based on the type of DL model used, dataset employed, and relevance to ECG analysis 

and heart disease diagnosis. 

o Common Models: CNNs, LSTM networks, hybrid models, and GANs were frequently selected due to 

their proven effectiveness in the field. 

o Algorithm Choice: Models were chosen based on their reported accuracy, sensitivity, specificity, and 

ability to handle imbalanced datasets. 

4. Training 

o Dataset Division: Data was divided into training, validation, and testing sets to ensure robust model 

training and evaluation. 

o Training Process: Implemented using deep learning frameworks such as TensorFlow and Py-Torch. 

Hyperparameters were tuned to optimize model performance. 

5. Evaluation 

o Metrics: Accuracy, sensitivity, specificity, F1 score, and AUC-ROC were used to evaluate model 

performance. 

o Validation: Cross-validation techniques were employed to ensure model robustness and generalizability. 

Criteria for Selecting DL Models and Algorithms 

• Performance: Models with high reported accuracy, sensitivity, and specificity were preferred. 

• Complexity: Preference was given to models that could handle the complexity of ECG signals and 

imbalanced datasets. 

• Innovative Approaches: Models that introduced novel techniques, such as hybrid architectures or GANs, 

were highlighted. 

• Real-World Applicability: Consideration was given to models that demonstrated potential for real-world 

clinical implementation. 

 

6. RESULTS  

This comprehensive audit investigated the integration of DL (DL) techniques within the plan and execution of 

ECG perusers and heart malady classification gadgets. 

Things about reliably illustrating moved forward precision in identifying heart illnesses utilizing progressed DL 

models like Convolutional Neural Systems (CNNs), Long Short-Term Memory (LSTM) systems, and crossover models 

combining different DL strategies. 

For occurrence, the application of CNNs in identifying arrhythmias from ECG information detailed tall exactness 

levels, with a few things about accomplishing symptomatic precision rates over 99%. 

These advancements are significant in the early and exact location of cardiovascular infections, contributing to 

superior understanding results. 

The utilization of DL has encouraged the advancement of versatile and user-friendly ECG observing gadgets, 

improving quiet engagement and healthcare availability. 

The accessibility of these datasets has empowered analysts to prepare and test DL models viably, driving to 

advancements in demonstrating generalization and execution over distinctive understanding populaces. 

The survey distinguished issues such as information security, the requirement for bigger and more different 

datasets, and the integration of DL apparatuses with existing therapeutic foundations as critical obstacles. 

Future Headings: 

The discoveries propose that future investigations ought to center on creating more strong DL models that can 

handle information from different persistent socioeconomics and clinical conditions. 

There is additionally a call for more collaborative endeavors to standardize ECG information and progress dataset 

accessibility, which would encourage improve the advancement and testing of DL models. Can find the following:  

o Accuracy: The average accuracy across the various studies is approximately 95.42%. This high value indicates 

that the models generally perform well in correctly identifying both true positives and true negatives. 

o Recall (Sensitivity): The recall average is 92.85%, showing that the models are proficient in identifying true 

positive cases, which is crucial in medical diagnostics to ensure that conditions are correctly identified. 

o F1 Score: The average F1 score is 91.64%, representing a good balance between precision and recall. This metric 

is particularly useful in medical diagnostics where both false positives and false negatives have significant 

consequences. 

o Precision: The average precision is 92.25%, reflecting the models' ability to avoid false positives, which is 

important to minimize unnecessary follow-up tests and treatments.  
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Figure 5 illustrates the average curve for the previous results. The following chart visualizes the average values of 

Accuracy, Recall, F1 Score, and Precision, illustrating the overall effectiveness of machine learning models in 

recognizing and classifying red blood cells 

 

FIGURE  5. – the average performance metrics across the studies 

 

7. DISCUSSION  

This comprehensive review highlights the significant advancements made in deep learning (DL) in 

electrocardiogram (ECG) analysis and heart disease classification. Studies using Convolutional Neural Networks 

(CNNs), Long Short-Term Memory (LSTM) networks, and hybrid models have shown remarkable accuracy in 

identifying cardiac anomalies. CNN-based models have achieved high classification accuracy, with ED-CNN achieving 

up to 99.1% precision. Hybrid models, combining CNNs with LSTMs, have been particularly effective in capturing 

both spatial and temporal features of ECG data, leading to enhanced performance. However, several limitations were 

identified in the reviewed studies, such as the reliance on a limited number of datasets, computational complexity 

associated with advanced DL models, and the lack of evaluation in real-world clinical settings.  The practical 

significance of these findings is profound, as the integration of DL in ECG analysis can revolutionize clinical practices 

by providing fast, accurate, and automated diagnostics, reducing the burden on healthcare professionals and minimizing 

the risk of human error. The development of portable and wearable ECG monitoring devices powered by DL can 

facilitate continuous monitoring of patients, providing real-time alerts for any irregularities, particularly beneficial for 

high-risk patients.  
 

8. CONCLUSIONS  

. This review highlights the significant advancements and potential of deep learning (DL) in the analysis of 

electrocardiogram (ECG) data and heart disease classification. DL models, particularly Convolutional Neural Networks 

(CNNs), have demonstrated high accuracy in classifying various types of heart diseases using ECG data. The 

integration of hybrid models, such as CNN-LSTM and GANs, has further enhanced the robustness and versatility of 

DL applications in ECG analysis. The use of DL in wearable and portable ECG monitoring devices has significantly 

improved real-time monitoring and early detection of heart diseases. The quality and diversity of datasets are crucial for 

training effective DL models. Recommendations include developing diverse datasets, integrating DL models into 

clinical practice, standardizing data, and focusing on explainability. Ongoing and future work in this field includes 

enhanced model interpretability, real-world testing, innovative model architectures, and personalized medicine. These 

efforts aim to improve the accuracy, efficiency, and generalizability of ECG analysis and heart disease classification. 
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