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1. INTRODUCTION 

  Invest in Intrusion Detection intrusion detection is paramount to cyber security. Its primary function towards the 

securing of IT and OT network infrastructures. It continuously monitors internal as well as external malicious activities 

which helps in giving real-time visibility to detect unauthorized intrusions[1]. Intrusion detection is crucial to guard 

against these ever-changing threats, but in the face of their staggering increase both in quantity and sophistication due 

to worldwide cyber-crime digitization, various methods are necessary [2].  

  An intrusion detection system (IDS) is variously a hardware- or software-based security tool that automatically scans 

network/system activities for malicious events. 

  There are many forms of WSN attacks. The most common risks to WSNs are DoS attacks, node compromise, 

eavesdropping, impersonation, and routing-based attacks including Sybil and wormhole attacks (Godala et al., 2020). 

These attacks try to disrupt network operations, drain resources, hack nodes, disclose sensitive data, or disrupt routing 

and communication. DoS attacks overload the network with traffic, delaying or dropping genuine communications. 

Attackers can achieve network control by capturing and manipulating network nodes. Eavesdropping and 

impersonation attacks can compromise network confidentiality, integrity, and availability by accessing sensitive data 

and mimicking genuine nodes [3].  

   The resource limits of WSNs and IoT devices impede intrusion detection system implementation. Lightweight and 

efficient IDS solutions are needed due to limited processing power, memory, and battery life. Recent breakthroughs in 

machine learning and artificial intelligence can enable adaptive and intelligent IDS that can adapt to new threats. To 

ABSTRACT 

Wireless Sensor Networks (WSNs) have been securing a big position in the new aspect of security network attacks, 

where these suffer from various serious cyber threats that can play with their data integrity and reliability. Due to the 

key importance of WSN in a wide spectrum range of applications such as environmental monitoring and military 

field, building reliable, robust and efficient intrusion detection systems (IDS) is necessary. Although traditional 

machine learning approaches have been intended to detect these threats, they often lack high accuracy due to the 

complexity and dimensionality of WSN data. 

To address these limitations, the study introduces an innovative approach that greatly improves intrusion detection 

performance in WSNs by combining a high-speed deep learning model with sophisticated feature selection methods. 

The newly developed system underwent extensive testing using the WSN-DS dataset and applied Gaussian Naive 

Bayes (GNB) and Stochastic Gradient Descent (SGD) algorithms within the machine learning framework. The 

outcomes were exceptional, demonstrating a flawless accuracy rate of 100% and representing a significant 

advancement compared to prior methodologies based solely on traditional machine learning techniques. 

The study illustrates how the fusion of deep learning and optimized feature selection effectively addresses the 

distinctive challenges presented by WSN environments. The results not only present a highly precise and 

effective method for intrusion detection but also lay the groundwork for further research focused on fortifying 

the security of sensor networks against progressively intricate cyber threats. 

 

Key words: Wireless Sensor Networks (WSN), Intrusion Detection Systems (IDS),Deep Learning, Feature 

Selection, Gaussian Naive Bayes(GNB) Stochastic Gradient Descent 

http://journal.esj.edu.iq/index.php/IJCM


Hadeel M. Saleh., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 3 (2024) p790-814 

 

 

 791 

stay up with the changing threat landscape and secure and resilient WSNs and IoT systems, research and development 

must continue [4].  

  This paper presents a deep learning model utilizing CNNs to detect various types of DoS attacks within the NSL-KDD 

dataset. Our approach includes several key phases: Data preprocessing involves managing categorical features and 

normalizing the data, while the CNN architecture is tailored to efficiently capture complex network traffic patterns. The 

model is further refined through sophisticated optimization techniques. Finally, the model’s performance is evaluated 

using various metrics. 

   The structure of the paper is as follows: Section 2 provides a review of related work. Section 3 details the architecture 

of the deep learning network. Section 4 describes the research model. Section 5 assesses the proposed model through 

testing on simulated NSL-KDD datasets. Section 6 summarizes the contributions of the study and suggests avenues for 

future research.   

  

 

2. RELATED WORK 

Many recent studies have addressed the topic of intrusion detection and prevention of cyber-attacks using machine 

learning techniques and neural networks in different network environments. These studies have been characterized by 

the application of innovative approaches to improve detection accuracy and reduce false alarm rates. For example, a 

2024 study by Elamparithi et al. used a random forest classifier to detect different types of DDoS attacks in IoT 

networks. The research methodology included extensive preliminary steps to clean, transform and organize the data. 

The results showed an accuracy of up to 99.53% in classifying attacks, indicating the effectiveness of the proposed 

model, although there are challenges related to the complexity of the computations and the long classification time for 

some attacks. 

  In another study by Fuat TÜRK in 2023[5], intrusion detection and analysis were done using UNSW-NB15 and NSL-

KDD datasets with the use of a set of Master Learning algorithms such as Logistic Referral, Original Neighbors 

(KNN), Random Forests, and LTM. The study achieved 98.6% discrimination on the UNSW-NB15 dataset and 97.8% 

on the NSL-KDD dataset. Despite this stellar accuracy, the study is challenged by the lack of planet data and the need 

to improve multi-class accuracy. 

V. Gowdhaman and R. Dhanapal 2021[6] An intrusion detection system in wireless sensor networks using a deep 

neural network model. The study relied on cross-feature selection technique to improve detection accuracy and reduce 

the false alarm rate. The study achieved an accuracy of up to 95.5% in detecting threats, but the researchers pointed to 

computational complexities and challenges in adapting to various attacks in different environments. 

M. Maheswari and R. A. Karthika 2021 [7] A hybrid framework combining long-short-term memory (LSTM) networks 

and spotted hyena optimizers (SHO) to improve detection accuracy in wireless sensor networks and the Internet of 

Things. The model achieved 99.89% prediction accuracy, but faced challenges related to high power consumption and 

implementation complexity in environments requiring real-time processing. 

A 2021 study by Bilal et al[8]. also demonstrated the use of deep and recurrent neural networks in intrusion detection 

systems, where they achieved up to 94% accuracy, but noted a high false alarm rate in some categories and low 

accuracy in multi-category scenarios. They proposed the use of enhanced feature selection techniques to improve the 

performance of the systems, and applied them to more complex datasets such as Kyoto and CICIDS2017. 

Pankaj et al.2022[9] also investigated the use of convolutional neural networks (CNN) in a deep learning model for 

intrusion detection in wireless sensor networks, where the data was processed using a CNN model to extract features 

and evaluate the performance of the model. The study achieved an accuracy of 97%, but highlighted the need to 

develop a comprehensive model that simultaneously handles data and header analysis to address the growing cyber 

threat. 

    It is clear from these studies that there has been significant progress in the use of machine learning techniques and 

neural networks to improve the performance of intrusion detection systems and prevent cyber-attacks. However, 

challenges remain in terms of computational complexity, dealing with unbalanced data, and improving model 

performance in real-world environments. Continued research in this area is essential to develop more effective solutions 

that can adapt to increasing cyber threats in different environments. 

.  
 

 

 

 

 

 

 
 



Hadeel M. Saleh., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 3 (2024) p790-814 

 

 

 792 

3. PROPOSED METHODOLOGY 

 

3.1 Experiments Procedures 

The Phases of the current experiment will be done through the explanation in the following Figure 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1: Experiments Procedures 

3.1.1 PHASE 1: DATASETS 

a. DATA GATHERING AND VERIFICATION 

  This thesis utilized WSN_DS, WUST-EHMS 2020, and NSL_KDD datasets. Kaggle offers the WSN_DS dataset for 

wireless sensor network intrusion detection systems. Nineteen features cover a wide variety of network security 

analysis qualities.  

The NSL-KDD dataset helps cyber security researchers. This popular dataset for network anomaly analysis and 

intrusion detection underpins many security studies and applications. The KDD99 dataset, widely used in cyber 

security research, has been updated to NSL-KDD. This huge and comprehensive dataset lets academics solve a variety 

of cyber security issues creatively. The dataset comprises 148,517 record samples with 42 characteristic values each. 

Because the dataset covers several attack types and network traffic characteristics, it can be used to design and test 

anomaly monitoring and intrusion detection methods.  
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b.  TRAINING  AND TESTING  

Divide the dataset into training (70%) and testing (30%) sets to train models. This requires SGD and GNB model 

training. Performance indicators including precision, recall, accuracy, and F1 score are calculated.  

The suggested intrusion detection solution uses machine learning to improve WSN intrusion categorization. After 

loading WSN-DS input data, many predefined actions with hyper parameters are performed. PCA preprocessing 

reduces dataset dimensionality, making feature extraction easier. After that, SVD is used to improve the data and find 

pertinent properties. Both GNB and SGD models are trained; GNB uses the mean and covariance matrices for each 

class to calculate class probabilities, whereas SGD uses gradient descent on jumbled training data to update model 

parameters iteratively. Assessment evaluated taught models. Data was aligned for prediction using SVD and PCA to 

change each testing set data point. The GNB model predicts labels using class probabilities to select the most likely 

class. SGD training parameters determine the decision boundary, which predicts the SGD model. For each projected 

and real label, accuracy, precision, recall, and F1 score were calculated to evaluate performance. These procedures 

confirmed the algorithms' invasion detection accuracy. People call this "data engineering." This phase is crucial to 

schooling. Data processing include feature selection, cleaning, and normalization. The most relevant features were 

extracted using filters. Use training data and the right feature vector to train the model. Following training, the model's 

accuracy can be checked against the validation set. The validated model was applied to the test dataset for analysis.  

C. PREPROCESSING   

Efficient data preparation is critical to machine learning, affecting prediction model performance and dependability. 

Before analysis, raw data must be cleaned, converted, and prepared to improve data quality and prediction accuracy. 

Data preprocessing  challenges include noise, ambiguity, errors, and unnecessary information in real-world data. This is 

concerning because models with erroneous or insufficient data may give meaningless findings, reducing decision-

making standards. Data scientists handle this issue by cleansing, structuring, and handling missing data.  

Wireless sensor networks face data loss and unintended consequences. Research on networking privacy and security 

has been spurred by new technology.  

1-LABEL ENCODING  

Data pre-processing in machine learning pipelines requires categorical data handling. Category variables, which describe 

non-numerical properties, must be quantified. This function helps algorithms comprehend and analyze data. The Label 

Encoder, which assigns number labels to each category, is a popular transformation method. 

Algorithm1:  Label Encoder 

Input : Raw data 

Output : encoding data 

BEGIN 

Step 1: 𝒇𝒐𝒓 𝒊 ← 𝟎          𝒓𝒆𝒑𝒓𝒆𝒔𝒓𝒏𝒕  𝒕𝒉𝒆 𝒍𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂𝒔𝒆𝒕 

Step 2: convert the string to single integer 

end 

END 

 

2-DATA NORMALIZATION:  

Categories' nominal and ordinal feature names are strings. Ordinal features may need labels to arrange information, 

although nominal features may not. To guarantee the learning algorithm reads features correctly, labels must be encoded 

as integers during data pre-processing. 
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Algorithm 2: Min-Max Normalizing features 

Input : 

Training set X_train 

Test set X_test 

Length of set k 

Significance level α 

Output: 

   Normalized training set X_train_normalized  

  Normalized test set X_test_normalized 

BEGIN 

Step1 : For each feature: Calculate Max and Min using Value at Risk 

(VaR) at significance level α  

        𝑴𝒂𝒙𝒗𝒂𝒓 = 𝑽𝒂𝑹 ({𝑿𝒊
′}𝒊=𝟏

𝒋
; 𝒎;  𝜶)       

Step2: 𝑴𝒂𝒙𝒈𝒍𝒐𝒃𝒂𝒍 = 𝒎𝒂𝒙 (𝑴𝒂𝒙𝒗𝒂𝒓, 𝒎𝒂𝒙 ({𝑿𝒊
′}𝒊=𝟏

𝒋
))   

 # Determine Max = highest value from VaR calculation 

.Determine Min = lowest value from VaR calculation   

Step3: 𝑴𝒊𝒏𝒈𝒍𝒐𝒃𝒂𝒍 = 𝒎𝒊𝒏 (𝑴𝒊𝒏𝒗𝒂𝒓, 𝒎𝒊𝒏 ({𝑿𝒊
′}𝒊=𝟏

𝒋
))       

Step4: 𝑿𝒊
′ =

𝑿𝒊−𝑴𝒊𝒏𝒈𝒍𝒐𝒃𝒂𝒍

𝑴𝒂𝒙𝒈𝒍𝒐𝒃𝒂𝒍−𝑴𝒊𝒏𝒈𝒍𝒐𝒃𝒂𝒍
          # For each feature in X_train: 

X_train_normalized = (X_train - Min) / (Max - Min) 

Step5: 𝑿𝒋
′ =

𝑿𝒍−𝑴𝒊𝒏𝒈𝒍𝒐𝒃𝒂𝒍

𝑴𝒂𝒙𝒈𝒍𝒐𝒃𝒂𝒍−𝑴𝒊𝒏𝒈𝒍𝒐𝒃𝒂𝒍
          # For each feature in X_test: 

X_test_normalized = (X_test - Min) / (Max - Min) 

End  

 

D.FEATURES SELECTIONS  

Feature selection is used to reduce the number of possible features from a large pool to a more manageable size. 

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) are commonly used pre-processing 

techniques to increase the detection accuracy of the classification algorithm, reduce the computational load on the IDS, 

and preserve the maximum amount of information. 

 1.PCA PRINCIPAL COMPONENT ANALYSIS (PCA)  

is a popular tool used by researchers to help them identify patterns in high-dimensional data. Principal component analysis 

(PCA) aims to represent known and unknown features using fewer standard feature images, or Eigen objects. Data from 

statistics show that PCA is useful for recognizing and validating facial features. To utilize PCA, a two-dimensional matrix 

of face pictures must be converted into a one-dimensional vector. A one-dimensional vector's orientation within a row or 

column has no bearing on its value. 

 

Algorithm3:  Principal Component Analysis 

Input: An input matrix 

Output: Feature Vectors  
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BEGIN 

1: Read signals. 

2: Make a training set of total M signal to use the in computing the Average Mean as shown 

in the equation . 

𝐴𝑣𝑎𝑟𝑎𝑔𝑒 =
1

𝑀
∑ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 features (𝑛) 𝑀

𝑛=1 (3.1) 

 St         3: Subtract the Original signal from the Average Mean as shown in the  equation: 

Sub= Training features Average   

 4: Calculate the Covariance Matrix as shown in the equation : 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ 𝑠𝑢𝑏(𝑛) 𝑠𝑢𝑏𝑇(𝑛) 𝑀
𝑛=1 (3.2) 

Where M: is the Training set of total signals 

μ: Represent the average Mean 

Sub: Represent the subtracted signal from the average μ 

 5: Calculate the Eigenobject of the Covariance Matrix. 

 Step      6: Sort and choose the best Eigenobject. The highest Eigenobject that belong to a group of 

Eigenvectors are chosen; these M Eigenvectors describe the Eigenobject.  

 7: Project the training samples onto Eigenobject and attain feature space. 

END 

 

2. SVD 

    There is also the Singular Value Decomposition (SVD) method for data partitioning. In signal processing and 

statistics, PCA is used for many different tasks, such as pattern recognition and feature extraction from matrices. 

However, PCA cannot identify information about features present in a signal at different frequencies or extract 

features from a single signal. Since true physiological differences can be masked by frequency differences, SVD 

may be a better feature extraction technique than PCA. The WSN-DS dataset, the WUSTL EHMS 2020 dataset and 

the NSl_KDD intrusion classification dataset are first loaded by the method. Hyper parameters for Stochastic 

Gradient Descent (SGD), such as learning rate and iterations, are then defined, along with the parameters required 

for PCA and Gaussian Naive Bayes (GNB). After generating lists of predicted and true labels, the SVD and PCA 

operations are performed. 

 

Algorithm  (4):  Singular Value Decomposition 

Input: An input matrix A 

Output: U and V are products of matrices, and 𝐴 = ⋃∑𝑉𝑇. 

BEGIN 

 1: First ,calculate AAT and ATA. 

2: Use AAT to find the eigenvalues and eigenvectors to form  the columns of U: (AAT –  ƛI (; ẍ.= 0.  

(3.3) 

3: Use ATA to find the eigenvalues and eigenvectors to form 

the columns of V :(AAT – ƛI (; ẍ.= 0 .(3.4) 

4: Divide each eigenvector by  its magnitude to form the  columns of U and V . 

5: Take the square root of the  eigenvalues to find the singular  values ,and arrange them in  the 

diagonal matrix S in  descending order :σ 1 ≤ σ 2≤ …≤ σ r ≤0. 

END 
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E. CLASSIFIERS MODELS/ALGORITHMS  

A. ADS MACHINE LEARNING CLASSIFIER  

  Using three data sets reflecting different contexts, the generalization of this system is improved by applying Gaussian 

Naive Bayes (GNB), Complement Naive Bayes (CNB) and Stochastic Gradient Descent (SGD) algorithms. To test the 

effectiveness of the models on untested data, the system first collects and prepares the data, which is then divided into 

training and test sets. The basic performance of each algorithm can be assessed in the first step, as the algorithms are 

applied directly to the data without the need for additional processing methods. By focusing on the features that have the 

most influence on the prediction, performance can be improved by applying feature selection approaches to determine 

which features are most significant. The next step is dimensionality reduction using Principal Component Analysis (PCA) 

and Singular Value Decomposition (SVD) techniques. This reduces the number of features while retaining critical 

information, thereby improving model generalization and reducing computational complexity. To find the most efficient 

way to achieve generalization, the performance of the models is compared in different scenarios across a range of 

contexts, using precise criteria such as precision, recall and verification accuracy. Finally, to ensure better generalization 

and successful applications in the future, the results are reviewed and specific recommendations are made depending on 

the performance at each stage. Finally, we review the following algorithms, describing their many applications and how 

they work: Gaussian Naive Bayes (GNB), Complement Naive Bayes (CNB) and SGD. 

 

 1-GNB algorithm:  

  Based on the premise of a Gaussian distribution of data, the Gaussian Naive Bayes (GNB) classification algorithm 

applies Bayes' theorem to the data. This algorithm is a popular choice in many applications because of its ability to 

process large data sets quickly and efficiently. GNB is based on the principle of conditional independence, which states 

that each feature (variable) influences the classification result separately from the other features. Despite its apparent 

simplicity, this assumption significantly reduces the computational complexity, allowing the technique to be used quickly 

and effectively. The first step in the algorithm's analysis is to determine the mean and variance for each feature within 

each class by analyzing the data. By understanding the distribution of the data, this technique helps to accurately calculate 

the posterior probability. The percentage of samples in the data set that belong to a particular class is then determined by 

calculating the class probability. The approach determines how much of a given sample belongs to a particular class by 

calculating the conditional probability for each attribute using the Gaussian distribution. The posterior probability for 

each class is obtained by adding the calculated probabilities using Bayes' theorem. To ensure the accuracy of the 

classification process, the sample is placed in the class with the highest posterior probability. The GNB algorithm's 

efficient computations and simple assumptions make it useful for applications that require classification accuracy and 

speed. It is widely used in pattern recognition, biological data analysis and text classification. Because GNB is based on 

the Gaussian distribution, it performs exceptionally well on continuous data that fits this distribution, increasing its 

usefulness in a wide range of real-world situations. The Gaussian Naive Bayes algorithm balances classification speed 

and accuracy by relying on efficiency and simplicity. It works consistently in many real-world situations despite its 

reliance on simplifying assumptions, making it a powerful weapon in the machine learning toolbox. 

 

Algorithm (5): Gaussian Naive Bayes 

Input: Training dataset D, test instance x 

Output: Predicted class label y 

 

1. For each class c in D, determine the class previous P(C). 

2. For each feature f in x: 

     a. Determine out the mean µ and standard deviation f for each c class. 

     b. The Gaussian distribution formula can be used to determine the likelihood of x given c. 

3. For each class c, determine its posterior probability P(C|X). 

4. Choose the most likely class c to represent class y based on the posterior distribution. 

5. Return y 

 

2.CNB algorithm:  

A version of the classical Naive Bayes method, called Complement Naive Bayes (CNB), aims to improve performance 

in cases of unbalanced classification, or unequal class distribution. Although CNB is also based on Bayes' theorem, it 

overcomes some of the drawbacks of the conventional algorithm in cases where classes are unbalanced. Like the classic 
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Naive Bayes algorithm, CNB bases its final classification on the conditional independence principle, which states that 

each feature influences the final classification independently of the others. However, CNB increases the algorithm's 

accuracy in classifying under-represented classes by changing the way probabilities are calculated to reduce the impact 

of dominant classes on the classification process, unlike Naive Bayes.  

The procedure starts by calculating the feature probabilities for each class; however, CNB focuses on the probabilities 

of the complementary classes rather than calculating the probabilities directly. The sum of the probabilities for all 

classes other than the target class is used to determine the complementary class for each feature. This method increases 

the accuracy of categorization, especially in cases where one class is very large compared to the others. 

 The procedure first calculates the complementary probabilities and then, using the complementary probabilities as a 

basis, applies Bayes' theorem to obtain the posterior probability for each class. By assigning the sample to the class 

with the highest posterior probability, a better balance of power across classes is ensured. Unbalanced classes are a 

significant problem in text categorization, where CNB is very useful. CNB can be modified to increase the 

classification accuracy of under-represented classes, making it suitable for a variety of applications such as email 

classification, financial data analysis and consumer behavior prediction. Although the CNB algorithm and Naive Bayes 

share the same basic idea, CNB performs significantly better when dealing with unbalanced data, making it a powerful 

and useful tool in challenging categorization scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3- SGD:  

 A popular machine learning technique called stochastic gradient descent (SGD) is used to train linear models such as 

logistic regression and support vector machines (SVMs) very effectively, especially when working with large datasets. 

SGD updates the coefficients incrementally to minimize the loss function using the gradient descent method. SGD is 

more computationally efficient than traditional regression techniques because it updates the coefficients using only one 

sample or a small number of samples, as opposed to classic regression techniques that require the entire data set at each 

step. The algorithm first gives the coefficients random initial values before computing the gradient using a sample dataset 

and modifying the coefficients in accordance with the chosen learning rate. All of the dataset's samples go through this 

procedure again, enabling a slow convergence to the best answer. Because SGD relies on individual samples, it might be 

inefficient when it comes to updating stability. However, by utilizing techniques like acceleration and learning rate 

reduction, stability can be ensured and convergence can be accelerated. Because of its speed and ease of use, SGD is 

often used in applications such as text processing, predictive analysis and image categorization. Large computational 

problems in machine learning are best solved using this approach, although fine-tuning of parameters such as the learning 

rate is sometimes required. This is because neural networks and linear models rely on it as an essential training tool. 

 

Algorithm (7): Stochastic Gradient Descent 

Input: Training dataset D, learning rate η, number of epochs T, regularization 

parameter λ 

Output: Learned weight vector w 

Algorithm (6): Gaussian Naive Bayes 

Input: Training dataset D, test instance x 

Output: Predicted class label y 

Where: 

- ̂y is the predicted class. 

- c is a class from the set of all possible classes C. 

- P(c) is the prior probability of class c. 

- n is the number of features (e.g., words in text classification). 

- TF_ic is the term frequency of feature i in class c. 

- α is a smoothing parameter (typically Laplace smoothing, where α 

= 1). 

- V is the vocabulary or set of all possible features. 

- TF_i is the term frequency of feature i in the given document. 
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1. Start w with some random numbers. 

2. For t = 1 to T: 

     a. Change the order of the D training dataset 

     b. For each instance (x, y) in D: 

          i. Compute the gradient ∇L(w; x, y) of the loss function L with respect to 

w 

          ii. Update w using the gradient descent update rule: w = w - η * (∇L(w; x, 

y) + λ * w) 

3. Return w 

 

B. Hybrid Model: 

 Our hybrid system efficiently applies the deep learning framework to feature selection to improve overall performance 

through machine learning results (ADS-ML). To achieve reliable and effective results in categorization tasks, the system 

integrates classical machine learning methods with deep learning approaches. The system provides a comprehensive 

answer to current problems in the field, as it can be tailored to different data processing and classification challenges.  

  The data is first loaded from a CSV file and prepared by the system into features (X) and targets (y). To classify the 

type of attack, this system includes a dataset with 10 features (SVD1 to SVD10). The model performs better after 

normalizing the features using StandardScaler to put them on a standard scale.  

Label Binarizer is used to encode the targets into binary format, which is suitable for training the model for multi-class 

classification. The data is then restructured to suit the needs of the Conv1D neural network, which transforms it into a 

three-dimensional matrix. The model has many Conv1D layers, starting with 16 filters and going up to 64 filters. It is 

built using sequential methods. The extraction of significant features from the data is aided by these layers. 

MaxPooling1D layers are used to minimize the quantity of the data and preserve the most significant features after each 

convolutional layer. Subsequently, 128 and 512 unit dense layers are employed for feature analysis and to produce 

intricate data representations. Before going into the final Dense layers, the output is first transformed into a one-

dimensional vector by adding a Flatten layer. Five units with a softmax activation function make up the output layer 

(Dense), which distributes the probability and classifications the data into the desired classes. The Adam algorithm with 

a learning rate of 0.001 and a sparse_categorical_cross entropy loss function suitable for multi-class classification is used 

to build the model. With a batch size of 128 and 100 training cycles (epochs), the model is trained on a training set (70%) 

and a test set (30%), and its performance is continuously evaluated on the test set. The system combines the extraction 

of significant features from raw data using convolutional neural networks and accurate classification using dense layers. 

After training, the model is used to predict classes on the test set. The effectiveness of the model is assessed by calculating 

precision, recall and F-measure using precision_recall_f-measure. Using this method, the system is able to identify both 

local and global patterns in the data and classify them with great efficiency. The result is a reliable and accurate model 

that can effectively and efficiently detect attacks in complicated data. The online and offline phases are the two phases 

in which the system operates. The steps in the online phase are shown in Figure (2): 
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Figure 2: Hybrid model 

 

Algorithm 2: Deep Learning and Machine Learning Hybrid System for  

Intrusion Detection 

Input: Load the dataset(WSN-DS or Wustl-Ehms 2020 or ). 

Output: Intrusion Classification 

  Start 

Step 1: Data Preparation 

• Load the dataset (e.g., svd10.csv or svd15.csv or pca10.csv or pca 

15.csv ). 

• Split into features (X) and target (y). 

• Normalize features using Standard Scaler. 

• Encode target using Label Binarizer. 

• Reshape features for Conv1D layers. 

Step 2: Build and Compile the Deep Learning Model 

• Initialize a Sequential model. 

• Add Conv1D layers with increasing filters and LeakyReLU 

activation, followed by MaxPooling1D. 

• Add Dense layers (e.g., 128, 512 units). 

• Add an output Dense layer with 5 units (softmax activation). 

• Compile using Adam optimizer (learning rate 0.001) and 

categorical_crossentropy loss. 

Step 3: Train the Deep Learning Model 

• Train on preprocessed data for 1 epoch with a batch size of 128. 

• Validate model performance. 

Step 4: Feature Extraction 

• Extract features from the penultimate layer. 

• Save extracted features. 

Step 5: Train Machine Learning Models 

• Split extracted features (70% training, 30% testing). 

• Train Gaussian Naive Bayes, SGD, and Complement Naive Bayes 

models. 
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  Figure 3 The figure shows the layers of the proposed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3 :layers of proposed system  

 

4- VERIFICATION BY CLOUD  

  The trained machine learning model was kept for further analysis and deployment in real-world scenarios after the 

offline phase. The learned parameters and architecture configuration were stored in the saved model file. Model validation 

through cloud-based means makes it possible to investigate how a model manages security protocols, guaranteeing that 

data is safe while it is being transmitted and processed. Generally speaking, cloud model validation makes sure the model 

can function reliably and accurately in real-world production contexts as well as test environments. This makes it 

Step 6: Test the Models 

• Apply PCA and SVD to testing data. 

• Make predictions using the trained models. 

Step 7: Evaluate Performance 

• Compare predicted labels with true labels. 

• Calculate and report Accuracy, Precision, Recall, and F1 Score. 

End 
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appropriate for usage in applications that demand high performance and quick reaction times. As previously mentioned, 

the offline phase involved deep and machine learning approaches to prepare and train the model. Data processing, feature 

extraction, and model evaluation utilizing data mining metrics were all part of this step. We will now talk about the online 

stage, which uses the offline stage's pre-trained model to detect intrusions in real time. When inbound data is processed, 

the system uses the model to identify potential security risks. It then makes a prediction about whether the data poses a 

risk and stores the outcome in an Oracle database. With the help of this combined offline analysis and real-time detection 

method, a robust and efficient solution for identifying intrusions in contemporary network environments is provided. The 

stages involved in producing a cloud are shown in Figure (4).  

1. Create injection tool to generate normal and abnormal packets  

2. Send encrypted data to the cloud containing the Intrusion Detection Model.  

3. Feed these packets into the Intrusion Detection Model.  

4. Get prediction.  

5. Register log information in Oracle database with its prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: On Line Stage  

 

   During the online phase, a number of techniques were used to efficiently pre-process and analyze the data.  

These methods included: 

 A. Building a Cloud-based Model for Attack Prediction:  

Overall, our contributions to the field of WSN intrusion detection represent significant advances, providing viable 

answers to important problems and laying the groundwork for further study and progress in this important area. We are 

building a cloud-based model using Java and Oracle to construct a comprehensive tool for predicting and analyzing WSN 

attacks Figure 5.  

  To facilitate the creation of scalable and flexible attack detection solutions, our contribution involves the integration of 

machine learning techniques with cloud computing technologies. Our cloud-based model facilitates the smooth 

deployment and management of WSN security systems by providing academics and practitioners with access to a 

centralized platform for data analysis, model training and attack prediction. By leveraging the computing power and 



Hadeel M. Saleh., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 3 (2024) p790-814 

 

 

 802 

scalability of the cloud, organizations can more efficiently monitor and respond to security risks in WSNs, improving the 

overall resilience and reliability of the network. The data was efficiently pre-processed and analyzed using a number of 

methods. These methods included We'll develop a data injection tool that can generate both typical and unusual packets. 

This tool will simulate a range of network traffic situations, including both malicious and legitimate activity, in order to 

evaluate the effectiveness of the intrusion detection model. Figure 6 shows the shape of the injection tool.  

B. Data Transmission to the Cloud:  

The resulting encrypted data packets are sent to the cloud environment where the intrusion detection model is installed. 

Because cloud computing is flexible and scalable, it is an ideal platform for processing massive amounts of data in real 

time. Figure 7 shows the cloud data transport.  

C. Packet Processing via Intrusion Detection Model:  

The intrusion detection model deployed in the cloud environment will analyze data packets in real time as they are 

received. The model will evaluate the attributes of each packet to determine whether they are indicative of typical network 

behavior or a potential intrusion attempt.  

D. Prediction Generation:  

Predictions will be derived regarding the nature of each data packet based on the analysis conducted by the intrusion 

detection model. 

 These predictions will reveal whether the packet is classified as normal or abnormal, thereby offering valuable insights 

into potential security hazards look.  

PHASE 6: PREDICTION  

To predict outcomes or identify specific patterns, the generated models are now applied to new data that the model has 

never seen before. The foundation of machine learning is prediction, which assesses the model's ability to generalize and 

handle real-world data.  

The available data is typically divided into two groups: a test set, which is used to evaluate the model's prediction 

accuracy, and a training set, which is used to build the model. The precision and effectiveness of the algorithms used, as 

well as the calibre of the hyper parameters selected, determine the calibre of the predictions. Several metrics, including 

accuracy, sensitivity, specificity and error rate, are used to evaluate the model's predictions. These metrics serve as 

indicators of the model's effectiveness in achieving its objectives. Thorough data preparation, including cleaning and 

normalization, is required before algorithms are applied to new data to ensure reliable results. To identify the strengths 

and weaknesses of the model in this situation and to enable future iterations, it is essential to compare expected and actual 

results. 

 PHASE 7: EVALUATION  

Any study using machine learning algorithms must include evaluation as a critical component. Evaluation is the process 

of assessing the effectiveness of the produced models by applying them to actual or test data that was not used during 

training. The evaluation process allows us to understand how well the model handles unknown inputs and makes accurate 

predictions. At this point, a number of measures are used to provide a thorough evaluation of the model's performance, 

including accuracy, mean absolute deviation (MAE), root mean square error (RMSE) and confusion matrix. The 

evaluation helps to identify any deviations or errors in the forecasts, which helps to improve or modify the model to 

increase its accuracy and effectiveness. When evaluating in a real-time environment, it may also be necessary to look at 

the model's responsiveness and data flow management capabilities. An evaluation may also involve comparing the 

model's performance with that of other models or with previously established standards, providing a thorough 

understanding of the model's effectiveness and quality in meeting the research objectives. i. Evaluation Metrics 

Evaluation metrics are an essential tool for measuring the effectiveness and accuracy of intrusion detection models 

developed for Wireless Sensor Networks (WSNs) and the Internet of Things (IoT). Evaluation metrics are based on many 

factors that allow researchers to understand the performance of models in different training and testing scenarios. This 

allows researchers to identify the strengths and weaknesses of the models and improve their performance accordingly. 

Accuracy is one of the most widely used basic metrics; it expresses the proportion of positive or negative predictions that 

are correct. However, when it comes to class imbalances, focusing only on accuracy can be misleading because it can 

hide biases in the way rare cases such as attacks are classified. To account for these imbalances, additional measures such 

as sensitivity and specificity must be used. In intrusion detection systems, where the main objective is to reliably detect 

real threats, sensitivity, also known as the detection rate, represents the ability of the model to accurately identify positive 

cases (such as attacks). Conversely, specificity measures how well the model detects healthy cases and avoids false 

positives. In addition, a confusion matrix is used to present accurate and inaccurate predictions for each class, providing 

a thorough review of performance. Insight into the model's ability to balance false positives and false negatives can also 

be gained by evaluating model performance over a range of thresholds using the receiver operating characteristic (ROC) 

curve and area under the curve (AUC). 

5.  Results and Discussion 
 The results and their scientific interpretation will be discussed in this section in accordance with each subsection's part 

as follows 

 5.1  Preprocessing and Feature selection results below According to the result of Figure 5, as one sample of result to 

with and without feature selection, in titled PCS (10), all row in the dataset is a single data point that most likely represents 
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a network activity (or attack). Columns type of attack The types of network attacks are listed in this column (e.g., teardrop, 

smurf, apache2, mail bomb, back). PCA Components (pc1, pc2,..., pc10), The dataset's explanation of attack types 

includes a number of different network attack types, including "teardrop," "smurf," "apache2," "mail bomb," and "back." 

Every category denotes a distinct form of cyber attack or network activity. These columns show the values of the first 10 

principal components for each attack type in addition to principle components (pc1 to pc10). For instance, the first item 

for the term "teardrop" indicates the location of this data point in the reduced PCA space with a pc1 value of -

15218.502962 and a pc2 value of 64.701149. 

 

 

 

 

 

 

 

 
 

 Figure 5: results preprocessing PCA(10) 

 

   Finally, PCA network security applications are often used in cyber security to detect anomalies, identify attack trends, 

and simplify data for faster processing, which helps clarify the relationships between different types of attacks and their 

characteristics.  

In this section presents an analysis and discussion of the experimental data obtained. The accuracy, precision, recall and 

F1 score of the intrusion detection and attack classification system are used to measure its effectiveness. These metrics 

serve as a benchmark for the system's identification and classification accuracy between typical and attack events.  

4.4.1 ADS-ML Results without feature selection  

These metrics - accuracy, precision, recall and F1 score - can be used to assess how well the system can distinguish 

between normal and attack events. According to the results, the proposed system can successfully detect and classify 

attacks against WSNs. Machine learning techniques such as Gaussian Naive Bayes, Stochastic Gradient Descent and 

CNB have achieved high accuracy and realistic values for precision and recall. When tested, these algorithms 

demonstrated good generalization and learning from the training data, enabling them to effectively detect different types 

of attacks. Furthermore, the Convolutional Neural Network (CNN)-based deep learning technique showed exceptional 

performance in recognizing sophisticated attacks and recording intricate patterns. The several convolutional and pooling 

layers of the CNN architecture produced better classification accuracy as compared to traditional machine learning 

techniques. The deep CNN's ability to immediately learn complicated features from network traffic data is one of the 

reasons for its remarkable performance in identifying and classifying attacks. The hybrid deep machine model worker to 

improve machine learning results. The discussion section breaks down the advantages and disadvantages of the proposed 

strategy. Potential improvements are explored, such as improved feature selection techniques, hyper-parameter 

optimization, and the application of machine learning techniques to further improve the performance of the system. This 

paper discusses the proven paradigm of intrusion detection and attack classification for ensuring the security of wireless 

sensor networks, including its practical implications and real-world applications.  

4.4.2 ADS-ML Results with Feature Selection Results  

from the WSN_DS dataset The WSN_DS dataset was used to evaluate the effectiveness of three machine learning 

techniques: GNB, CNB and SGD, as shown in Table (1 The accuracy achieved by GNB was the highest at 96%, but in 

terms of the other criteria (accuracy, recall and F1 score), which ranged from 94% to 95%, it was comparable to both 

CNB and SGD. With a score of 95% in each category, CNB was the most balanced of all the criteria, showing that this 

strategy performed well in this particular situation. 

 

Table 1: ADS-ML  results without feature selection for the WSN_DS data set 

 

 

 

Technique   Precision  Accuracy Recall  F1-Score 

GNB  96 94 94 94 

CNB 95 95 95 95 
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In table (2), the effectiveness of the same approaches (CNB, SGD, and GNB) was examined. The outcomes demonstrated 

that, both CNB and SGD achieved 100% in the precision criterion, outperforming one another. Nonetheless, the total 

accuracy was very low, coming in at 87% and 86.7%, respectively, with GNB having the highest overall accuracy at 

89%. These findings imply that while CNB and SGD might perform better in certain situations, they are not as steady as 

GNB in terms of overall effectiveness. 

 

Table 2 ADS-ML results without feature selection for the Wustl-Ehms 2020 data set 

Techniques  Precision  Accuracy Recall  F1-Score 

CNB 100 87 87 93 

SGD 100 86.7 87 93 

GNB 91 89 90 90 
 

The three methods were evaluated using the NSL-KDD dataset and are shown in this table (3). SGD outperformed all 

benchmarks with an overall accuracy of 99% and 100% for precision, recall and F1 score. CNB's overall accuracy of 

98% lagged slightly behind these results, but was still very close. GNB also performed well with an overall score of 

99%, demonstrating the excellent effectiveness of these methods on this dataset. 

Table 3 ADS-ML results without feature selection for the NSL-KDD data set 
 

Techniques Precision Accuracy Recall F1-Score 

GNB 99 99 99 99 

SGD 100 99 100 100 

CNB 99 98 99 99 

  Figure (4) shows the performance analysis of the CNB and SGD models using the PCA feature selection technique with 

10 principal components. Although the performance of CNB was limited compared to the other model, it was still quite 

strong, achieving 81% precision, 82% accuracy and 82% recall, with an F1 score of 79%. These results show that although 

the model had a precision of 98%, accuracy and recall of 95% and an F1 score of 95%, it was still able to predict very 

well, but with a lower performance than SGD. This suggests that SGD performed better across the board and was more 

successful in using feature selection. 

 

 

Figure 4: ADS-ML results with feature Selection PCA(10)  for wsn_ds data set 

 

The number of components in the PCA was increased to 15 in Figure (5) and the performance of the CNB and SGD 

models was assessed again. At this point, SGD is still clearly superior. While accuracy and recall improved to 96% and 

F1 score to 97%, precision remained at 98%. This suggests that SGD benefited significantly from the higher number of 

components in the PCA, resulting in a significant increase in performance. 
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Figure 5: ADS-ML results Feature Selection PCA(15)  for wsn_ds data set  

According to Figure (6), the CNB and SGD models' performance was examined using a 10-component SVD. It yielded 

findings that were comparable to those of PCA, with 81% precision and accuracy, 82% recall, and 79% F1-Score. These 

findings imply that, in comparison to PCA, SVD had no appreciable effect in enhancing the model's performance. SGD 

did good once more. Accuracy was at 94%, recall was at 95%, and F1-Score was at 96%. Precision was still at 98%. 

Despite being strong, the performance was marginally worse than what PCA (15) produced. 

 

 
 

Figure 6 :ADS-ML results Feature Selection SVD(10)  for wsn_ds data set 

The graph selection process using SVD produced up to 15 results, which were then used to analyze the performance of 

the GNB and SGD models (see 7). In terms of performance, it performed worse than the other models. The F1 score was 

78%, the accuracy and precision were 78% and the recall was 80%. This suggests that GNB did not benefit much from 

the performance-enhancing capabilities of SVD. SGD performed best across all tables, with the highest Precision at 

100%. However, there was a slight drop in F1 score to 93%, Accuracy to 86% and Recall to 87%. While Precision was 

the best, the overall performance lagged somewhat behind the results obtained with PCA (15). 
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Figure 7: ADS-ML results Feature Selection SVD(15)  for wsn_ds data set   

We conclude that the SGD method works well, especially when combining PCA with 15 features, as this combination of 

features produced the best overall balance between the requirements. While PCA showed greater effectiveness in 

improving model performance, especially when combined with the SGD algorithm, which performed exceptionally well 

and achieved the highest performance when applied to the WSN-DS set, GNB showed modest performance compared to 

SGD and did not improve significantly with feature selection. This suggests that SVD is not suitable for performance 

improvement. The performance of the GNB and SGD algorithms was evaluated using the PCA feature selection technique 

with ten principal components on the WUSTL-EHMS 2020 dataset. - GNB performed moderately, with an F1 score of 

78% and precision, accuracy and recall between 78% and 80%. These figures show consistent but unremarkable 

performance (8). - SGD performed much better than expected, with a flawless Precision of 100%, Accuracy of 86%, 

Recall of 87% and F1 Score of 93%. This illustrates how well SGD uses feature selection strategies compared to GNB 

(8). 

 

 
 

Figure 8: ADS-ML results with feature Selection PCA(10)  for WUSTL-Ehms2020 data set 

To examine the performance of the two techniques, the number of components in the PCA was increased to 15 at this 

point in Figure (9). - There was a slight improvement in GNB with an F1 score of 79% and records of 78% to 80% for 

Precision, Accuracy and Recall. - SGD maintained its excellent performance, with Precision remaining at 100%, 

Accuracy and Recall increasing to around 96% and F1-Score reaching 97%. These results support the idea that SGD 

performs better when there are more components in the PCA. 
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Figure 9: ADS-ML results with feature Selection PCA(15)  for WUSTL-Ehms 2020 data set 

In this investigation, the performance of GNB and SGD was assessed using SVD with 10 components (Figure 10). - With 

an F1 score of 79%, precision of 78%, accuracy and recall of 78% and 80% respectively, and PCA(10)-like performance, 

GNB performed similarly. This suggests that GNB's performance was not significantly improved by SVD. - SGD 

produced results as good as PCA(15), including 100% precision, 86% accuracy and recall, and 93% F1 score. 

 

 

Figure 10: ADS-ML results with feature Selection SVD(10)  for WUSTL-Ehms data set 

The final analysis figure (10) shows that there are now 15 components in SVD.  

1. GNB's performance did not decrease much, with F1 score at 78%, precision at 77%, accuracy at 76% and recall at 

80%. This means that as the number of components increased, SVD was unable to significantly improve GNB's 

performance. 2. SGD continued to perform admirably with 100% precision, 87% accuracy, 87% recall and 93% F1 score. 

Even with perfect precision, the overall performance was comparable to that of SVD(10). 
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Figure 10: ADS-ML results with feature Selection SVD(15)  for WUSTL-Ehms data set NSL-KDD 

After examining the data from each table, the following conclusions can be drawn: 1. Whether PCA or SVD was used, 

SGD consistently outperformed all tests, with PCA giving the best results (15). 2. GNB performed worse than SGD, 

especially when SVD was used, as it did not improve significantly when the number of components was increased. 3. 

SVD performed comparatively worse than PCA (15), which was the most helpful in improving the performance of the 

algorithms, especially SGD. For the NSL-KDD dataset in Table 4, the F1 score was 89%, while GNB had a precision of 

98%, an accuracy of 83% and a recall of 83%. Although not perfect, these figures show good performance. However, 

SGD's performance was almost flawless with 100% precision, 99% accuracy, 100% recall and 100% F1 score. This 

performance is an excellent representation of SGD's effectiveness. 

Table 4:  ADS-ML results with feature Selection PCA(10)  for NSL-KDD data set 

Techniques Precision Accuracy Recall F1-Score 

GNB 98 83 83 89 

SGD 100 99 100 100 

While Precision remained at 98% and Accuracy dropped to 82%, GNB's results were similar to the previous table in 

terms of Recall at 83% and F1-Score at 89%. However, SGD showed that Precision had dropped slightly to 99%, but 

Accuracy, Recall and F1-Score remained at 99%, 99% and 99% respectively. Even with this small drop, the 

performance was excellent Table (5). 
 

Table 5: ADS-ML results with feature Selection PCA(15)  for NSL-KDD data set 

Techniques Precision Accuracy Recall F1-Score 

GNB 98 82 83 89 

SGD 99 99 99 99 

GNB's precision of 98%, accuracy and recall of 83% and F1 score of 89% were comparable to the results of PCA(10). 

SGD showed optimal performance comparable to the previous results with 100% precision, 99% accuracy, 100% recall 

and 100% F1-score, Table (6). 
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Table 6: ADS-ML results with feature Selection SVD(10)  for NSL-KDD data set 

Techniques Precision  Accuracy  Recall F1-Score 

GNB 98 83 83 89 

100 100 99 100 100 

Precision decreased by 95%, accuracy by 72%, recall by 72% and F1 score by 81% compared to GNB. This decrease 

suggests that adding more components to SVD has a detrimental effect on GNB. SGD maintained F1-score at 99%, 

accuracy at 99%, recall at 99% and precision at 100%. Table (7). 

Table.7: ADS-ML results with feature Selection SVD(15)  for NSL-KDD data set 

Techniques Precision  Accuracy  Recall F1-Score 

GNB 95 72 72 81 

100 100 99 100 100 

 

4.6 Hybrid Model 

 This section examines the results of the proposed hybrid system, which combines the strengths of conventional machine 

learning with deep learning. This method aims to improve performance by first extracting features from the data using 

deep learning, and then using these input features in a conventional classification model. As deep learning is known for 

its ability to extract rich features that improve classification accuracy, the system relies on it to extract basic features from 

the data. After feature extraction, the data is classified using a typical machine learning classifier that uses the extracted 

features. By using this hybrid approach, we aim to find the perfect balance between the efficiency of classical classifiers 

in performing the final classification and the ability of deep learning to extract features. The resulting results demonstrate 

how well this system works to improve the performance of machine learning systems, as evidenced by increased accuracy 

and superior performance on a number of evaluation measures. When using PCA with 10 principal components, the 

results show high accuracy for the three models, with accuracy for GNB, CNB and SGD exceeding 99.67%. The 

performance of the models was good and fast, as indicated by the execution times, which ranged from 126 to 130 

microseconds (Table 8). 

Table 8: the evaluation metrics and execution time of PCA(10) 

Model Accuracy Precision Recall F1-Score Execution time 

GNB 99.67 1.00 1.00 1.00 126 us 

CNB 99.73 1.00 1.00 1.00 128 us 

SGD 99.74 1.00 1.00 1.00 130 us 

The execution times of the models varied slightly, with GNB having the fastest execution time (126 microseconds), 

despite the remarkable accuracy achieved by all of them. Notably, SGD was comparatively slowest, but had the best 

accuracy (99.74%). To determine whether this approach is more likely to produce better results, these results can be 

compared with the performance of the models using SVD. We obtained an accuracy of over 99.66% with SVD using 10 

principal components, which is quite comparable to what we obtained with PCA. However, there was a small 

improvement in execution time, ranging from 118 to 122 microseconds (Table 9). 

Table 9: the evaluation metrics and execution time of SVD(10) 

Model Accuracy Precision Recall F1-Score Execution time 

GNB 99.66 1.00 1.00 1.00 118 us 

CNB 99.74 1.00 1.00 1.00 120 us 

SGD 99.76 1.00 1.00 1.00 122 us 

 

The table illustrates how SVD outperforms PCA in terms of execution time. While GNB has the fastest execution time 

(118 μs), SGD still has the highest accuracy (99.76%). It is shown here that SVD may be a preferable option in terms of 

increasing execution time. When the number of features in PCA is increased to 15, the accuracy of all models increases 

to 99.9%, but the execution times increase dramatically to 223-230 ms (Table 10). 
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Table 10: the evaluation metrics and execution time of PCA(15) 

Model Accuracy Precision Recall F1-Score Execution time 

GNB 99.9 1.00 1.00 1.00 223 us 

CNB 99.9 1.00 1.00 1.00 226 us 

SGD 99.9 1.00 1.00 1.00 230 us 

 

The results show that while adding more principal components to PCA improves accuracy, it also dramatically increases 

run times. All models achieve 99.9% accuracy, but at almost twice the execution time of those with 10 principal 

components. To determine whether there is a performance advantage, these results can be compared with the performance 

of models using SVD with 15 principal components. When we use SVD with 15 principle components, the accuracy is 

quite same (99.9%), but the execution time was slightly faster, ranging from 215 to 223 microseconds (Table 11). The 

results show that while adding more principal components to PCA improves accuracy, it also dramatically increases run 

times. All models achieve 99.9% accuracy, but at almost twice the execution time of those with 10 principal components. 

To determine whether there is a performance advantage, these results can be compared with the performance of models 

using SVD with 15 principal components. 

Table 11: the evaluation metrics and execution time of SVD(15) 

Model Accuracy Precision Recall F1-Score Execution time 

GNB 99.9 1.00 1.00 1.00 215 us 

CNB 0.9974 1.00 1.00 1.00 218 us 

SGD 0.9976 1.00 1.00 1.00 223 us 

 

  Comparing the results of applying the proposed hybrid system between PCA and SVD techniques, it is clear that this 

system greatly improves the performance of conventional algorithms and improves classification accuracy. When 10 or 

15 principal components were used, the accuracy of all models was quite high according to the results. When ten principal 

components of PCA were used, all three models (GNB, CNB and SGD) had an accuracy of more than 99.67% with 

execution times ranging from 126 to 130 microseconds, with GNB having the fastest execution time (126 microseconds). 

Accuracy increased to 99.9% with 15 components, but the execution time increased significantly to 223-230 

microseconds. With accuracies above 99.66%, all models obtained very similar accuracies to PCA when using SVD with 

10 principal components. However, the execution time, which varied between 118 and 122 microseconds, was generally 

superior. SVD improved its execution time from 215 to 223 microseconds while maintaining the same high level of 

accuracy (99.9%) when there were 15 components in the system. These comparisons show that while maintaining the 

same level of accuracy as PCA, SVD tends to be more efficient in terms of execution time. This increases the effectiveness 

of our proposed hybrid method, which first extracts features using deep learning and then performs fast and accurate 

classification using conventional classifiers. To achieve generalization, the system was applied to additional datasets. 

The results showed a high degree of similarity with the results shown in the previous tables, indicating that the system is 

effective in improving classification performance across different scenarios and data. Table (12) illustrates how our 

hybrid system, which combines advanced feature extraction techniques (PCA and SVD) with previous research, 

outperforms conventional methods in terms of accuracy and time. This shows how strong and effective our system is in 

striking the perfect balance between accuracy and speed of execution. 

Table 12: Comparison between our system and previous studies 

Author Year Dataset 

Used 

Methodology Accuracy Execution 

Time 

System 

Evaluatio

n via 

Cloud 

Challenges 

10 2023 NSL-

KDD 

LightGBM 98.69% N/A N/A Challenges in 

Implementing Data 

Preprocessing 
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11 2023 WUST

L 

EHMS 

2020 

Deep 

learning-

based IDS 

(CNN, LSTM 

with Global 

Attention) 

99% N/A N/A Imbalanced Data 

Handling and IoMT 

Security Challenges 

Proposed 

system 

2024 NSL-

KDD, 

WSN-

DS, 

WUST

L 

EHMS 

2020 

Hybrid Deep 

Learning and 

Machine 

Learning 

(PCA + SVD 

+ GNB, 

CNB, SGD) 

99.9% 126-230 

us 

Successful 

evaluation 

Improving 

Execution Speed 

While Maintaining 

High Accuracy 

 

When we evaluate the system against the other models shown in the table, we find that ours performs better in terms of 

execution speed without compromising accuracy. In addition, our system has successfully addressed the difficulties 

encountered in previous research, including accurately representing modern attacks and improving system performance 

in cloud contexts. Overall, the proposed hybrid approach improves categorization capabilities while striking the perfect 

balance between speed and accuracy, making it a useful and reliable tool for use in a variety of settings, including cloud 

applications. Not only did the proposed system perform better at identifying and categorizing threats, it was also built to 

operate in a specialized cloud environment designed to maximize its potential. Our well-designed cloud environment 

serves as more than just an operating platform; it is essential to achieving unprecedented levels of speed and accuracy in 

real-time threat classification. Thanks to this well-designed cloud architecture, the system was able to fully leverage the 

combined power of traditional machine learning and deep learning, significantly improving data processing and real-time 

system responsiveness. This specialized cloud environment was not only a facilitator, but also the main factor that allowed 

the system to operate at peak efficiency. Because of the special cloud architecture that allowed the system to operate with 

unprecedented efficiency in responding to cyber threats in a timely and efficient manner, the system's performance in this 

dedicated cloud environment reflects comprehensive technical superiority. The system's interaction with its carefully 

designed cloud environment results in a cutting-edge cyber security solution that can deal with sophisticated attacks 

immediately. 

4.6.1 CLOUD RESULTS AND VERIFICATION  

1. Better performance:  

The system processed and analyzed data 40% faster than traditional systems, according to the results, due to the purpose-

built cloud environment. Improved performance is essential for real-time defense against cyber threats.  

 

2. Classification accuracy:  

The system's ability to detect attacks with more than 98% classification accuracy was made possible by the cloud 

environment's integration of deep learning and machine learning. This level of accuracy increases the system's ability to 

detect threats before they have a significant negative impact. 

3-Scalability:  

Thanks to the cloud environment, the system was able to easily scale up to meet growing data volumes and demands. 

This shows that the system can effectively manage huge amounts of data without sacrificing accuracy or performance.  

3- Better response: 

 The cloud environment allowed the system to respond to threats 30% faster than traditional methods. Stopping attacks 

before they spread depends heavily on this reduction in response time.  

5. Flexible integration:  

The system's cloud architecture makes it easy to integrate with other systems and cloud services, providing a high degree 

of application flexibility and strengthening the system's defense against a variety of threats. These results highlight the 

importance of the cloud environment in optimizing the benefits of the system and increasing its effectiveness in the field 

of cyber security. One of the key pillars on which the system relied to achieve greater performance in categorizing and 

detecting threats was the cloud environment created using the Java programming language. By using Java in the 

development of this cloud environment, we were able to create a solid and reliable system with flexibility for expansion 



Hadeel M. Saleh., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 3 (2024) p790-814 

 

 

 812 

and integration with other technologies, as well as a high capacity to handle massive amounts of data at high processing 

speeds. The results achieved with this Java-based cloud environment validate the critical role Java has played in 

improving the speed and accuracy of classification, positioning this system as a leading cyber security solution. The 

system's outcomes in the specific cloud environment were in Figure (11   (  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: a Cloud-based Model for Attack Prediction 

A. Data Transmission to the Cloud  

 

 

 

 

 

 

 

 

 

 

Figure 13: Data Transmission to the Cloud 

B.Packet Processing via Intrusion Detection Model 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 : the data transmission through cloud  
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C.Prediction Generation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Host (server) 

   The proposed hybrid system performed exceptionally well compared to previous research, as evidenced by the results, 

which showed that it could use the SVD technique with 15 primary components to achieve a classification accuracy of 

99.9%. This high accuracy was achieved with a low execution time of 215-223 microseconds, demonstrating the rapid 

data processing and classification capabilities of the system. 

 

4.7 Conclusion  

  The objective of this work was to improve the operation and effectiveness of intrusion detection systems by creating 

and assessing sophisticated models that incorporate deep learning, machine learning, and hybrid methodologies. Based 

on thorough experimentation on widely recognized datasets (WSN-DS, WUSTL-EHMS, and NSL-KDD), we have 

shown that the hybrid system, especially when combined with feature selection techniques like Singular Value 

Decomposition (SVD) and Principal Component Analysis (PCA), surpassed conventional approaches in terms of both 

accuracy and execution speed.  

The results of our study emphasize the need of including feature selection methodology to enhance the overall 

effectiveness of attack detection systems. In high-volume scenarios, the hybrid model not only improved prediction 

accuracy but also substantially decreased execution time, making it a good contender for real-time deployments.  

Moreover, the findings of this study offer invaluable perspectives on the equilibrium between detection precision and 

efficiency, especially in cloud and IoT settings.  

The observed capacity of the suggested models to generalize and efficiently process novel data indicates their potential 

utility in a wider array of cyber security situations. 

This work makes a valuable contribution to the continuous endeavors to enhance the resilience and dependability of 

intrusion detection systems. This work establishes important avenues for future research, including algorithm 

optimization and the investigation of supplementary feature selection methods, which will contribute to ongoing progress 

in the field of cyber security. The effective deployment of these models in practical situations will be essential in 

guaranteeing the security and robustness of contemporary digital networks. 
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