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ABSTRACT: Consider a new iterative scheme of linearized Newton’s method to calculate the minimal nonnegative
solution of a nonsymmetric Riccati equation associated with a game model. The minimal solution is important to find
Nash strategies in a game for positive systems. The Newton procedure is applied to work out a nonnegative solution
of this type of equations. Our proposal is effective one because it employs small number of matrix multiplication
at each iteration step and there is a variant to exploit the block structure of matrix coefficients of the Nash-Riccati
equation. Moreover, in this reason, it is easy to extend the proposed iterative modification depending on the number
of players of a given game model. We provide a numerical example where compare the results from experiment with
the proposed iteration of linearized Newton’s method.
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1. INTRODUCTION
We ponder the nonsymmetric Riccati equation with matrix coefficients in the form

R(X) = −DX−XA−Q+XSX , X =

(
X1
X2

)
, (1)

where (−A) is a real n× n coefficient, and D is a diagonal 2× 2 block matrix with entries AT . The matrices S and Q are

block matrices of the form S = (S 1 S 2) , Q =
(

Q1
Q2

)
.

In addition, we know S j = B j R−1
j j BT

j (S j = S T
j ) is a nonpositive matrix, B j is an n×m j nonnegative matrix, Q j is

an n× n symmetric nonnegative matrix, R j j is an m j ×m j matrix with negative entries for j = 1,2 and X1,X2 are n× n
unknown matrices.

The definition of the stabilizing solution X̃ =

(
X̃1

X̃2

)
of (1) is defined [1] as a left-right stabilizing solution. It uses

to construct both matrices A− S 1X̃1 − S 2X̃2 and
 AT − X̃1S 1 −X̃1S 2

−S 1X̃2 AT − X̃2S 2

 which are stable. The Newton method to

determine X̃ is investigated and a convergence proof is derived under several assumptions [1]. The Nash equilibria theory
applied to a game model on positive systems is presented in [2]. The theory is founded on the concept of deterministic
feedback behaviour and the open loop approach. The linearized Newton method (LNM) to determine X̃ is introduced
in [5].Moreover, the LNM is numerically investigated by Baeva [4].

Guo [5] has been proved that if the matrix K = [-A S; -Q -D ] is an M-matrix then equation (1) has minimal nonnegative
solution. Further on, Guo [6] has been derived the property of R(X) = 0 that if K is a regular M-matrix and all diagonal
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entries of (−A) are positive then there is the nonnegative solutionΦ with −A+SΦ is a regular M-Matrix. Therefore,Φ < X
for any nonnegative solution of the inequality R(X) ≤ 0, which means that Φ is the minimal nonnegative one.

In this paper, we consider an improvement of the linearized Newton method to determine the stabilizing solution of (1)
which has nonnegative entries. In fact, that is the minimal nonnegative solution. We derive a convergence proof for this
modification. In addition, we display a decoupled variant of this modification.

We propose a modification of the linearized Newton method to determine the stabilizing solution. The proposed
iterative scheme is more productive than the LNM. Our computer realization requires a smaller number of matrix mul-
tiplications. The algorithm uses less CPU time to compute the stabilizing solution than LNM. Moreover, the algorithm
of the introduced iteration can be reorganized to obtain a parallel realization. Finally, we done numerical experiments to
certify the advantages of the introduced scheme and compare two solvers.

We apply the some facts and properties of matrix algebra and specially of branch of nonnegative matrices. We denote
the set of real s× q matrices with Rs×q. Matrices are denoted in the following way A = (ai j) ,1 ≤ i ≤ m, 1 ≤ j ≤ n, in
shortly A = (ai j) ∈Rm×n. The nonnegative matrices are defined in an elementwise order relation. Each nonnegative matrix
has nonnegative entries, i.e. A is nonnegative if ai j ≥ 0 for all indexes i, j. In addition, the inequality F ≥ R(F > R) for
F = ( fi j),R = (ri j) means that fi j ≥ ri j( fi j > ri j) for all indexes i and j.

A square matrix A = (ai j) ∈Rn×n is called a Z-matrix if it has nonpositive off-diagonal entries. Moreover, any Z-matrix
A can be presented as A = αIn −N, where In is the identity matrix and N is a nonnegative one. We need to introduce
M-matrices as a tool in our investigation. If α ≥ ρ(N), where ρ(N) is the spectral radius of N, the matrix A is an M-matrix.
Each M-matrix is a Z-matrix with if α ≥ ρ(N), where ρ(N) is the spectral radius of N. More specially, if α > ρ(N) it is a
nonsingular M-matrix and if α = ρ(N) it is a singular one. In addition, any matrix is a stable one, if its eigenvalues has
negative real parts.

2. ITERATIVE METHODS AND CONVERGENCE ANALYSIS
The linearized Newton method (LNM) was introduced by C. Ma and H. Lu in [5]. Set Z0 = 0, we compute matrix

sequences {Yi} =

 Y (i)
1

Y (i)
2

} and {Zi =

 Z(i)
1

Z(i)
2

} via following iterations

Yi+1(γIn+A−S Zi) = (γI2n−D)Zi−Q (2)

(γI2n+D−Yi+1S )Zi+1 = Yi+1(γIn−A)−Q, (3)

for i = 0,1,2, ... and γ < 0, as sequence {Zi} converge to the solution K̃, when i converge to the infinity [5].The convergence
properties are proved in [5].

Here, we slightly modify iteration (2)-(3) to upgrade linearized Newton’s method:

Y(k)(γIn+A) = (γI2n−D+X(k) S )X(k)−Q (4)

(γI2n+D)X(k+1) =Y(k)(γIn−A+SY(k))−Q (5)

We introduce a few properties of matrix sequences defined by (4)-(5)

Lemma 1. We construct two sequences {X(k),Y(k)}∞k=0 applying iteration (4) - (5) for an initial value X(0) = 0. The
following matrix identities are satisfied for k = 0,1, . . . ,∞:

(i) (Y(k)−X(k))(γI+A) = (X(k)−Y(k−1))(γI−A)

+X(k)S (X(k)−Y(k−1))+ (X(k)−Y(k−1))SY(k−1) ,

(ii) (γI2n+D)(X(k+1)−Y(k)) = (γI2n−D)(Y(k)−X(k))

+(Y(k)−X(k))SY(k)+X(k)S (Y(k)−X(k)) .

Moreover, if X̃ is an exact solution of R(X) = 0 the identities can be verified:

(iii) (Y(k)−X̃)(γI+A) = (γI2n−D)(X(k)−X̃)

+(X(k)−X̃)SX(k)+X̃S (X(k)−X̃) .
(iv) (γI2n+D)(X(k+1)−X̃) = (Y(k)−X̃)(γI−A)

+(Y(k)−X̃)SY(k)+X̃S (Y(k)−X̃) .
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Proof. The proof is completed by direct calculations and matrix manipulations. We rewrite equation (5) for X(k) and
consider the difference Y(k)(γI + A)− (γI2n +D)X(k). After some matrix calculations we obtain the matrix identity (i).
Subtracting (4) from (5) we derive (ii).

We apply matrix identities derived in Lemma 1 to obtain some convergence properties of introduced scheme (4)-(5).
The main contribution in the paper is the convergence analysis for (4)-(5). It is attained in the following theorem.

Theorem 1. Assume matrices A,D,S = (S 1,S 2), and Q =
(

Q1
Q2

)
are coefficients of matrix equation R(X) = 0. Suppose,

there exists a negative number γ < 0, which guarantees that −(γIn+A) is an M-matrix.
The sequences {X(k),Y(k)}∞k=0 where matrices X(k),Y(k) are computed via (4) - (5) satisfy inequalities:

X̃ ≥X(k+1) ≥Y(k) ≥X(k) for k = 0,1, . . ., for an exact solution X̃ of R(X) = 0 .

Moreover, the convergence property is fulfilled:

The matrix sequence {X(k)}∞k=0 converges to the minimal solution X̃ to Riccati equation R(X) = 0. The solution is
nonnegative and stable.

Proof. We begin with the facts that (γIn + A)−1 ≤ 0 and (γIn + AT )−1 ≤ 0. The matrix coefficients are Q ≥ 0 and S ≤ 0.
Matrices γIn−A, and γI2n−D are nonpositive. We create sequences {X(k),Y(k)}∞k=0 applying recursive equations (4) - (5)
with X(0) = 0 and γ < 0.

For k = 0 we obtain Y(0)(γIn+A)=−Q≤ and thus Y (0)
i =−Qi(γIn+AT )−1 ≥ 0 .And Y(0) ≥X(0) = 0 and Y(0)−X(0) ≥ 0.

Assume the inequalities X(k) ≥ Y(k−1) ≥X(k−1) ≥ 0 true for some integer k. It is true that X(k) −Y(k−1) ≥ 0, and
Y(k−1)−X(k−1) ≥ 0.

We shall prove that X(k+1) ≥Y(k) ≥X(k) ≥ 0.
Applying Lemma 1 (i), we get

(Y(k)−X(k)) =W(k) (γIn+A)−1 ,

where
W(k) := (X(k)−Y(k−1))(γI−A)+X(k)S (X(k)−Y(k−1))+ (X(k)−Y(k−1))SY(k−1) ≤ 0 ,

because S ≤ 0 and X(k)S (X(k)−Y(k−1)) ≤ 0. Thus (Y(k)−X(k)) ≥ 0.
Further on, according to Lemma 1 (ii) we have

(X(k+1)−Y(k)) = (γI2n+D)−1 H(k) ,

where
H(k) := (γI2n−D)(Y(k)−X(k))+ (Y(k)−X(k))SY(k)+X(k)S (Y(k)−X(k)) ≤ 0 .

Thus (X(k+1)−Y(k)) ≥ 0.
We conclude the matrix sequences {X(k),Y(k)}∞k=0 are monotone increasing. We have to prove that they are bonded

above. Consider any exact nonnegative solution X̃ of R(X) = 0. We shall prove that the solution is an upper bound of the
matrix sequences.

For k = 0, we have X̃ ≥X(0) = 0, and (Lemma 1 (iii))

Y(0)−X̃ = [ −(γI2n−D)X̃−X̃S X̃](γI+A)−1 ≤ 0 .

Using the equality for k = 0 :

(γI2n+D)(X(1)−X̃) = (Y(0)−X̃)(γI−A)+ (Y(0)−X̃)SY(0)+X̃S (Y(0)−X̃) ≥ 0 ,

we conclude (X(1)−X̃) ≤ 0.
Thus

X̃ ≥X(1) ≥Y(0) ≥X(0) .

Assume
X̃ ≥X(k+1) ≥Y(k) ≥X(k) .
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We shall prove
X̃ ≥X(k+2) ≥Y(k+1) ≥X(k+1) .

Applying the identity Lemma 1 (iii) for k+1, we obtain

(Y(k+1)−X̃)(γI+A) = (γI2n−D)(X(k+1)−X̃)+ (X(k+1)−X̃)SX(k+1)+X̃S (X(k+1)−X̃)

The conclusion is (Y(k+1) − X̃) ≤ 0 because the right-hand is nonnegative and (γI + A)−1 ≤ 0. Analogously, based on
Lemma 1 (iv) for k+1 we find the inequality (X(k+2)−X̃) ≤ 0.

Thus
X̃ ≥X(k+2) ≥Y(k+1) ≥X(k+1) .

Therefore, both matrix sequences converge to the same matrix X̂. Letting k→∞ in (4) - (5) one concludes that X̂ is
a solution of R(X) = 0.

Assume there is another solution Z with Z ≤ X̂. There exists a large index s such that X(s+1) ≥Z ≥Y(s) ≥X(s) .
Applying Lemma 1 (iv) (k=s) for X̃ =Z, we get

(γI2n+D)(X(s+1)−Z) = (Y(s)−Z)(γI−A)

+(Y(s)−Z)SY(s)+X̃S (Y(s)−Z) .

We rewrite
(γI2n+D)(X(s+1)−Z) = V (s) ,

with V (s) ≥ 0. Then (X(s+1) −Z) = (γI2n +D)−1 V (s) ≤ 0. The fact "X(s+1) −Z is nonpositive" is a contradiction with the
assumption X(s+1) ≥Z. Therefore the solution X̂ is the minimal one, i.e. it is the stabilizing solution.

3. COMPUTATIONAL BEHAVIOUR
To determine the minimal nonnegative solution of R(X) = 0 the introduced iteration (4)-(5) is decoupled in the form:

Y (k)
1 (γIn+A) = (γIn−AT +X(k)

1 S 1+X(k)
2 S 2) X(k)

1 −Q1 (6)

Y (k)
2 (γIn+A) = (γIn−AT +X(k)

1 S 1+X(k)
2 S 2) X(k)

2 −Q2 (7)

(γIn+A′)X(k+1)
1 = Y (k)

1 (γIn−A+S 1Y (k)
1 +S 2Y (k)

2 )−Q1 (8)

(γIn+A′)X(k+1)
2 = Y (k)

2 (γIn−A+S 1Y (k)
1 +S 2Y (k)

2 )−Q2 . (9)

We set initial values X(0)
1 = X(0)

2 = 0 ∈ Rn×n.
In our experiment we replace iteration (4)-(5) with decoupled variant (6)-(9). Actually, the decoupled modification of

linearized Newton’s method, named DMLNM, was introduced by Tanov [7]. However, in his paper a convergence proof
for DMLNM is not given. In this paper we fill that gap and the convergence analysis is presented in Theorem 1.

We present a numerical example where two mentioned iterations LNM (2)-(3) and DMLNM (6)-(9) are enforced to
find the minimal nonnegative solution of the corresponding matrix equation. The computed solution is employed to create
Nash equilibrium strategies in a two player game model. We compare results obtained from above iterations. The matrix
coefficients Q1,Q2,R11 , and R22 for n = 4 are created under the Matlab depiction.

Example. We define the coefficients of (1) as follows:

A =


−2.74 0.06 0.015 0.099

0.2 −2.5 0.064 0.08
0.004 0.15 −2.56 0.09

0.14 0.12 0.21 −2.57

 , B1 =


0.5938
0.2985

0.49
0.98

 ,

B2 =


2.8 0 0 0

0 2.9 0 0
0 0 2.84 1.5
0 0 1.5 1.3

 ,
Q1=eye(4,4)/2; Q1(1,1)=2.0; Q1(4,4)=1.5;
Q2 = 0.5∗Q1;
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R11 = −1.909 ∈∈ R1×1;
R22 = -eye(4,4); R22(1,1)=-50; R22(4,4)=-30;
Both algorithms use the stop criteria ∥R(X(k))∥ ≤ tol = 1.0e−14. We execute algorithms for different values of γ and

compare results. The values of γ are: γ = −5 ,γ = −3 , γ = −1 and γ = −0.75 . Table 1 involves the results for different
values of γ. The average CPU time (avCPU) is available for 100 runs. Additional computational advantages of (6)-(9)
are (a) the algorithm easy to extend for parallel computations; (b) the algorithm computes only one inverse matrix, that is
(γIn+A)−1, which is an n×n matrix.

According to Table 1, we have seen the both iterative methods need the same number of iteration steps for γ = −1 and
γ = −0.75. Moreover, the DMLNM is faster than the LNM for all values of γ. Yet, the conclusion is that the DMLNM
iteration is faster than LNM and effective one for small values of |γ|. More computational experiments can be found in [7].

Table 1. Comparison of LNM and DNLNM for minimal solution of R(X) = 0.

LNM (2)-(3) DMLNM (6)-(9)
γ avIt avCPU avIt avCPU

seconds seconds
-5 43 0.063 55 0.06
-3 26 0.084 37 0.047
-1 23 0.04 22 0.029
-0.75 30 0.066 30 0.035

4. CONCLUSION
The computation of the stabilizing solution of the Nash-Riccati equations is important for applications. Moreover, it is

important to construct fast iterative methods to find this solution. Here, we were presented a convergence proof to effective
iteration scheme (6)-(9). The computational simplicity of the algorithm lead us to the efficiency of the proposed iteration.
Related discussions are expected to lead to new computational algorithms to similar problems. The fast computation of
the stabilizing solution is important to construct the Nash optimal strategies for the corresponding game model and finally
to find the Nash equilibrium point.
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