Applications for the groups $S_{U,T}(2,p)$, where p prime upper than 9

Lemya Abd Alameer Hadi1*, Mahmood S. Fiadh2*, Niran Sabah Jasim3*, Jabbar Abed Eleiwy4*

1 Department of Communication Engineering, University of Technology, Baghdad, Iraq
2 Department of Computer Science, College of Education, Al-Iraqia University, Baghdad, Iraq
3 Department of Mathematics, College of Educational for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
4 Department of Applied Sciences, University of Technology, Baghdad, Iraq

*Corresponding Author: Lemya Abd Alameer Hadi

DOI: https://doi.org/10.52866/ijcsm.2024.05.01.005
Received June 2023; Accepted August 2023; Available online January 2024

Abstract The problem of finding the cyclic decomposition (c.d.) for the groups $S_{U,T}(2,p)$, where p prime upper than 9 is determined in this work. Also, we compute the Artin characters (A.ch.) and Artin indicator (A.ind.) for the same groups, we obtain that after computing the conjugacy classes, cyclic subgroups, the ordinary character table (o.ch.ta.) and the rational valued character table for each group.

Key Words: Cyclic decomposition, upper triangular subgroup, Artin character, Artin indicator, cyclic subgroups.

1. INTRODUCTION

$G.L.(n,F)$ consisting of all $n \times n$ invertible matrices over the field F. $U.T.(n,F)$ consisting of all $n \times n$ invertible upper triangular matrices over the field F set forms a subgroup. $S_{U,T}(n,F)$ obtained from $U.T.(n,F) \cap S.L.(n,F)$, [11].

In this work, we compute the cyclic decomposition (c.d.) and Artin character (A.ch.) and Artin indicator for the groups $S_{U,T}(2,9)$ and $S_{U,T}(2,11)$ and generalize this work for $S_{U,T}(2,p)$, where p prime upper than 9.

Many authors [1–6] computed the same work for the groups $SL(2,\mathbb{U})$, $\mathbb{U} = 23, 29, 31, 37$ and 49, $PSL(2,31)$ and $PSL(2,37)$ $(2,\mathbb{U})$, $\mathbb{U} = 23, 29, 31$ and 37. Although the Authors in [7–12] studied the cases $(6,6,4,0,0)$, $(8,8)/(1,0)$, $(7,7,4,0,0)$, $(8,7,3)$ and $SL(2,3)$, in [13] and [14] the authors studied new algorithm and symmetric generalized.

2. FUNDAMENTAL INFORMATION

Proposition 2.1 [15]:

$S_{U,T}(2,q) = \{(a, b) : a \in F_q^*, b \in F_q^*\}$. Therefore, $|S_{U,T}(2,q)| = q(q-1)$.

Theorem 2.2 [15]:

The group $S_{U,T}(2,q)$ has at least $q + 3$ conjugacy classes as illustrated in the following table:
Table 1.

| σe | g | No. of σe | $|\epsilon_{\sigma e}(\sigma)|$ | σg |
|----------|-----|------------------|------------------|--------|
| $\sigma_{1}^{(1)}$ | $(0,1)$ | 1 | $d_{1}^{2} - g$ | 1 |
| $\sigma_{2}^{(1)}$ | $(0,-1)$ | 1 | $d_{2}^{2} - g$ | 1 |
| $\sigma_{3}^{(1)}$ | $(1,0)$ | 1 | $d_{3}^{2} - g$ | 1 |
| $\sigma_{4}^{(1)}$ | $(1,-1)$ | 1 | $d_{4}^{2} - g$ | 1 |

where are $C C$ conjugacy classes in $F_{h,k}^{(3)}$. h,k denote the integer for $\alpha = e^{h k}$, where e is a generator of the group $F_{h,k}^{*}$ and $\alpha \in F_{h,k}^{*}\{1,-1\}$.

Theorem 2.3 [1]:
If G is a cyclic p group. Then $\mathcal{H}(G) = Z_{p}$.

Proposition 2.4 [1]:
If G is a cyclic group s.t. $|G| = p^{n}$, then $\mathcal{H}(G) = \bigoplus_{i=1}^{n} Z_{p^{i}}$.

Theorem 2.5 [15]:
The $(o.ch.ta.)$ of $S.U.T. \{2,q\}$, where q is odd.

Table 2.

<table>
<thead>
<tr>
<th>σe</th>
<th>g_{1}</th>
<th>g_{2}</th>
<th>g_{3}</th>
<th>g_{4}</th>
<th>g_{5}</th>
<th>g_{6}</th>
<th>g_{7}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{1}^{(2)}$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
</tr>
<tr>
<td>$\sigma_{2}^{(2)}$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
</tr>
<tr>
<td>$\sigma_{3}^{(2)}$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
<td>$(0,1,0)$</td>
</tr>
</tbody>
</table>

where $e = (-1)^{\frac{q-1}{2}}$, $s = 2,3,...,q-2$ and $k = 0,1,...,q-2$.

3. THE $\mathcal{H}(S.U.T. \{2,q\})$, WHERE $p = 9,11$

Following the same idea in [1–6], we find the results for these groups.

3.1 The $\mathcal{H}(S^U T(2,9))$

$[S.U.T. \{2,9\}] = 72$ and the $(o.ch.ta.)$ of $S.U.T. \{2,9\}$ is summarized in table 3.
After we omit the same similar columns, we gain

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
4 & -4 & 4 & -4 & 4 & -4 & 0 & 0 \\
2 & 2 & 2 & 2 & 2 & 2 & -2 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 \\
4 & -4 & 1 & -1 & -2 & 2 & 0 & 0 \\
4 & -4 & -2 & 2 & 1 & -1 & 0 & 0 \\
4 & 4 & 1 & 1 & -2 & -2 & 0 & 0 \\
4 & 4 & -2 & -2 & 1 & 1 & 0 & 0 \\
\end{pmatrix}
\]

The diagonalization of this matrix is

\[
\begin{pmatrix}
36 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

Thus, \(\mathcal{K}(S.U.T. (2,9)) = \mathbb{Z}_{36} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{1} \oplus \mathbb{Z}_{1} \)

3.2 \(\mathcal{K}(S.U.T. (2,11)) \)

\(|S.U.T. (2,11)| = 110\) and the (o.ch.ta.) of \(S.U.T. (2,11) \) is summarized in Table 4.

Table 4. (o.ch.ta.) of \(S.U.T. (2,11) \)

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_0^{10})</th>
<th>(x_0^{10} - x_0)</th>
<th>(x_0^{10} - x_0)</th>
<th>(x_0^{11})</th>
<th>(x_0^{11} - x_0)</th>
<th>(x_0^{11} - x_0)</th>
<th>(x_0^{11})</th>
<th>(x_0^{11} - x_0)</th>
<th>(x_0^{11} - x_0)</th>
<th>(x_0^{11})</th>
<th>(x_0^{11} - x_0)</th>
<th>(x_0^{11} - x_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>x_{(2)}</td>
<td>)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>(x_1)</td>
<td>1</td>
</tr>
<tr>
<td>(x_2)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0.3090 + i</td>
<td>0.3090 + i</td>
<td>1</td>
<td>-i</td>
<td>-i</td>
<td>-i</td>
</tr>
<tr>
<td>(x_3)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-8090 + i</td>
<td>-8090 + i</td>
<td>1</td>
<td>0.3090 - 8090 + i</td>
<td>-8090</td>
<td>0.3090 - 8090 + i</td>
</tr>
</tbody>
</table>

80
After we omit the same similar columns, we gain

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
4 & 4 & 4 & 4 & 1 & 1 \\
4 & 4 & 4 & 4 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
10 & 10 & 1 & 1 & 0 & 0 \\
10 & 10 & 1 & 1 & 0 & 0
\end{pmatrix}
\]

The diagonalization of this matrix is

\[
\begin{pmatrix}
55 & 0 & 0 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

Thus, \(K(\mathcal{S}, \mathcal{U}, (2, 1)) = \mathbb{Z}_{55} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_1 \)

4. THE (A.ch.) AND (A.ind.) FOR \(\mathcal{S}, \mathcal{U}, (2, p) \). WHERE \(p = 9, 11 \)
As the same idea in [1], in [6–10] we find the results for these groups.

4.1 The Result for $S.U.T.(2,9)$

The group $S.U.T.(2,9)$ has 8 cyclic subgroups, which are as follows:

\[<T_0^{(1)}>, < -T_0^{(1)}>, <T_0^{(2)}>, < -T_0^{(2)}>, <T_{1,0}^{(2)}>, < -T_{1,0}^{(2)}>, <T_{2,-2}>, <T_{3,-3}> \]

The rational valued character table of $S.U.T.(2,9)$ is summarized in Table 5.

Table 5. The rational valued character table of $S.U.T.(2,9)$

<table>
<thead>
<tr>
<th>$C(g)$</th>
<th>$T_0^{(1)}$</th>
<th>$-T_0^{(1)}$</th>
<th>$T_0^{(2)}$</th>
<th>$-T_0^{(2)}$</th>
<th>$T_{1,0}^{(2)}$</th>
<th>$-T_{1,0}^{(2)}$</th>
<th>$T_{2,-2}$</th>
<th>$T_{3,-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>C_{SUT}(2,9)(g)</td>
<td>$</td>
<td>72</td>
<td>72</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>$</td>
<td>C(g)</td>
<td>$</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>x_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_1 + x_3 + x_5 + x_7$</td>
<td>4</td>
<td>-4</td>
<td>4</td>
<td>-4</td>
<td>4</td>
<td>-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$x_5 + x_6$</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>x_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>θ_1</td>
<td>4</td>
<td>-4</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>θ_2</td>
<td>4</td>
<td>-4</td>
<td>-2</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$x_1 \theta_1$</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$x_1 \theta_2$</td>
<td>4</td>
<td>4</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

By employing

$$\phi_H^{SUT(2,9)}(\alpha) = \frac{|C_{SUT(2,9)}(x)|}{|C_H(\alpha)|} \sum_{\alpha \in \chi} \phi(\alpha),$$

where H is the cyclic subgroup.

The (A.ch.) is summarized in Table 6.

Table 6. The (A.ch.) table of $S.U.T.(2,9)$

<table>
<thead>
<tr>
<th>$C(g)$</th>
<th>$T_0^{(1)}$</th>
<th>$-T_0^{(1)}$</th>
<th>$T_0^{(2)}$</th>
<th>$-T_0^{(2)}$</th>
<th>$T_{1,0}^{(2)}$</th>
<th>$-T_{1,0}^{(2)}$</th>
<th>$T_{2,-2}$</th>
<th>$T_{3,-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varnothing_1</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\varnothing_2</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\varnothing_3</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\varnothing_4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\varnothing_5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\varnothing_6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>\varnothing_7</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>\varnothing_8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

From tables 5 and 6, we get

$$x_0 = \frac{1}{9} \varnothing_0 + \frac{1}{9} \varnothing_7 + \frac{1}{9} \varnothing_6 + \frac{1}{9} \varnothing_5 + \frac{1}{9} \varnothing_4 + \frac{1}{9} \varnothing_3 + 0.28703703703704 \varnothing_2 - 0.073302469135803 \varnothing_1, \quad x_1 + x_3 + x_5 + x_7 = \frac{-36}{9} \varnothing_0 + \frac{36}{9} \varnothing_5 + \frac{-36}{9} \varnothing_4 + \frac{36}{9} \varnothing_3 - 0.2222222222222222 \varnothing_2 + 0.5 \varnothing_1, \quad x_2 + x_6 = \frac{-18}{9} \varnothing_7 + \frac{18}{9} \varnothing_6 + \frac{18}{9} \varnothing_5 + \frac{18}{9} \varnothing_4 + \frac{18}{9} \varnothing_3 + 0.11111111111111 \varnothing_2 - \frac{64}{441} \varnothing_1, \quad x_4 = \frac{-1}{9} \varnothing_8 + \frac{1}{9} \varnothing_7 + \frac{1}{9} \varnothing_6 + \frac{1}{9} \varnothing_5 + \frac{1}{9} \varnothing_4 + \frac{1}{9} \varnothing_3 + 0.030864197530864 \varnothing_2 - 0.065586419753086 \varnothing_1, \quad \varnothing_1 = \frac{18}{9} \varnothing_6 + \frac{18}{9} \varnothing_5 + \frac{18}{9} \varnothing_4 + \frac{18}{9} \varnothing_3 - 0.234567901234568 \varnothing_2 - 0.066358024691358 \varnothing_1, \quad \varnothing_2 = \frac{-1}{9} \varnothing_8 + \frac{1}{9} \varnothing_7 + \frac{1}{9} \varnothing_6 + \frac{1}{9} \varnothing_5 + \frac{1}{9} \varnothing_4 + \frac{1}{9} \varnothing_3 + 0.44444444444444 \varnothing_2 + 0.031635802469136 \varnothing_1.
\[
X_2 \varphi_2 = \frac{1}{9} \varphi_6 + \frac{1}{9} \varphi_5 - \frac{18}{9} \varphi_4 - \varphi_3 + 0.111111111111111 \varphi_2 + 0.0216049382716 \varphi_1.
\]
Therefore, \(72 \varphi_i = (Z) \varphi_i, \ i = 1, \ldots, \ 8\). So, \(A(S, U, T, (2, 9)) = 72\).

4.2 The Result for \(S, U, T, (2, 11)\)

The group \(S, U, T, (2, 11)\) has 6 cyclic subgroups, which are as follows:
\(<T_0^{(3)}>, <T_0^{(2)}>, <T_0^{(1)}>, <T_{01}^{(2)}>, <T_{01}^{(1)}>, <T_{2-2}^{(3)}>, <T_{3-3}^{(3)}>\)

The rational valued character table of \(S, U, T, (2, 11)\) is summarized in table 7.

Table 7. The rational valued character table of \(S, U, T, (2, 11)\)

<table>
<thead>
<tr>
<th>(c(g))</th>
<th>(-T_0^{(1)})</th>
<th>(-T_0^{(2)})</th>
<th>(-T_0^{(3)})</th>
<th>(-T_{01}^{(2)})</th>
<th>(-T_{01}^{(3)})</th>
<th>(-T_{2-2}^{(3)})</th>
<th>(-T_{3-3}^{(3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>c_{sur}((2,11))(g)</td>
<td>)</td>
<td>110</td>
<td>110</td>
<td>22</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>(</td>
<td>c(g)</td>
<td>)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>(X_6)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(x_1 + x_3 + x_7 + x_9)</td>
<td>4</td>
<td>-4</td>
<td>4</td>
<td>-4</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(x_2 + x_4 + x_6 + x_8)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>(x_5)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>(\varphi_1 + \varphi_2)</td>
<td>10</td>
<td>10</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x_1 \varphi_1 + x_1 \varphi_2)</td>
<td>10</td>
<td>10</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

By employing
\[
\phi_1^{syt((2,11))} = \frac{|c_{syt((2,11))}(X)|}{|c_n(X)|} \sum_{H \in SUT(2,11)} \phi(H), \text{ where } H \text{ is the cyclic subgroup.}
\]

The (A.ch.) is summarized in table 8.

Table 8. The Artin characters table of \(S, U, T, (2, 11)\)

<table>
<thead>
<tr>
<th>(c(g))</th>
<th>(-T_0^{(1)})</th>
<th>(-T_0^{(2)})</th>
<th>(-T_0^{(3)})</th>
<th>(-T_{01}^{(2)})</th>
<th>(-T_{01}^{(3)})</th>
<th>(-T_{2-2}^{(3)})</th>
<th>(-T_{3-3}^{(3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_1)</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\varphi_2)</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\varphi_3)</td>
<td>11</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\varphi_4)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\varphi_5)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\varphi_6)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

From tables 7 and 8, we get
\[
X_6 = \frac{1}{11} \varphi_6 + \frac{1}{11} \varphi_5 + \frac{1}{11} \varphi_4 + \frac{1}{2} \varphi_3 - 0.037190082644628 \varphi_2 - 0.106611570247934 \varphi_1.
\]
\[
x_1 + x_3 + x_7 + x_9 = \frac{1}{11} \varphi_6 - \frac{1}{11} \varphi_5 - \frac{44}{11} \varphi_4 + 2 \varphi_3 - 0.173537190082640 \varphi_2 - 0.542148760330578 \varphi_1.
\]
\[
x_2 + x_4 + x_6 + x_8 = \frac{1}{11} \varphi_6 - \frac{1}{11} \varphi_5 + \frac{44}{11} \varphi_4 + 2 \varphi_3 + 0.190082644628099 \varphi_2 - 2.003305785123967 \varphi_1.
\]
\[
x_9 = -\frac{1}{11} \varphi_6 - \frac{1}{11} \varphi_5 - \frac{1}{2} \varphi_4 + \frac{1}{2} \varphi_3 - 0.053719008264463 \varphi_2 - 0.106611570247934 \varphi_1.
\]
\[
\varphi_1 + \varphi_2 = \frac{1}{11} \varphi_4 + \frac{1}{2} \varphi_3 + 0.454545454545550 \varphi_2 + 0.10330578585123967 \varphi_1.
\]
\[
x_1 \varphi_1 + x_1 \varphi_2 = \frac{1}{11} \varphi_4 - \frac{1}{2} \varphi_3 + 0.454545454545550 \varphi_2 + 0.096694214876033 \varphi_1.
\]
Therefore, \(55 \varphi_i = (Z) \varphi_i, \ i = 1, \ldots, \ 8\). So, \(A(S, U, T, (2, 11)) = 55\).

5. Conclusion
The c.d. for each group is equal to \(K(g) = U \mathcal{T}(2, q_i) = \oplus Z q_i \), where \(q_i \) are \(|g|/2 \), the orders of the conjugate classes and complete the remainder by 1. Also, the A.ind. is equal to \(|g| \).

Funding

None

ACKNOWLEDGEMENT

None

CONFLICTS OF INTEREST

None

REFERENCES

