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Abstract
Consider a left J-module I. The present study introduces the concept of rad-quasi-prime submodule that
serves as a dual popularization of both quasi-prime submodules and primary submodules. An apposite

submodule 4 of a J-module I named as rad-quasi-prime if for allt € I and a, b € J withabu € A

satisfies either au € A or bu € 'rad(A). Numerous facts and characterizations regarding this
concern are acquired.

Key Words: Rad-quasi-prime submodule, quasi-prime sub modules, primary sub modules, prime sub
modules.

1. INTRODUCTION

This study aims to achieve its objectives through the execution of the proposed research. In mathematical
notation, the symbol “J” is used to represent a ring with an identity. Similarly, the symbol “I” is used to denote a left J
module.

We use notations < to denote inclusion. For a submodule A of a J-module I, we let [A:_R 1] indicate the ideal
={reR,rIcA}. A proper sub modules A of an J- module I named as prime denoted by A<p | if for all mel and a€J
with ameA implies meA or a€[A:_R I]. The radical for a sub module A, which is symbolized by rad(A)={N_(A<B
=B, where B<p I }. If A isn’t in any prime, the radical of A can be denoted as rad(A)=I. Furthermore, it can be stated
that a proper submodule A is considered to be a radical sub module of I if A=rad(A)[1]. A proper sub module of an J-
module I A named as primary denoted by A<pr I if for each mel and a€J with ameA implies ueA or a*ne[A:l] (that
is, aeV([A:1]) ) [2]. Further, in Z as Z-module. The submodule p*n Z is a primary sub module if and only if p is a
prime number and n is a positive integer. A proper sub module A is named as semiprime if for each u€l and a€J with
a2 u€eA infers aueA [3]. An apposite sub module A of an J-module | named as quasi-prime (QP) denoted by A<QP I
if for all uel and a,beJ with abueA implies that either aueA or bueA [4]. A proper sub module A of an J- module |
named as 2- absorbing if for all uel and a,beJ with abueA indicates that either aueA or bueA or abe[A:l] [5]. A
proper submodule A is called 2- absorbing primary if for all uel and a,beJ with abueA implies that either auerad(A)
or buerad(A) or €[A:1] [6]. It is obvious that each 2-absorbing sub module is 2-absorbing primary.

This work consists of two sections. In section 2, we represent the concept of rad-QP submodules where facts and
characterizations about this type of submodules are discussed.

We would like to record that for any prime number p, pZ&@Z, Z@pZ are prime sub-modules of ZgZ as Z-module. It
can be observed that in the case of non-equal prime numbers p and q, pZ@qgZ cannot be classified as a prime sub
module of Z (suppose the values p=2, q=3).

The subsequent discussion employs the notation Z, [ Z] _(p*w)and [ Z] _n=Z/nZ to refer to integers the p-Priifer

group and the residue ring of integers modulo n, respectively.
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2. RAD-QUASI-PRIME SUBMODULES

Definition 2.1
A proper sub module C of a J-module I named as rad-QP, represented as (C Rad_QP of I) if for each n € [ and
P, q € J with pgn € C implies that either pn. € C or gn € rad (C).

Proposition 2.2
For every submodule A<qr I, then | is a rad-QP.
Proof

Let A <gp I and abu € A forsome s, t € J, u € I. Hence, either su € Aortu € A € rad(A) is desired.

The opposite of Proposition (2.2) does not hold universally, as demonstrated in the next example:
Example 2.3

Let ] = Z as Z- module and A = 47Z be a submodule of I where rad(A) = 2Z. By a simple calculation, we see
that is A is a rad-QP. But A4 is not QP since taking s = 2,t = 2, u = 1, then stu € A whilesu ¢ Aortu ¢ A
does not make A a QP.

Theorem 2.4

Let I be a J-module and A be submodule of I such that rad (A) # I. The following statements are of equal meaning:

1) ARad _QPofl

2) rad(A)<erl

Proof

(1) = (2) Assuming that A Rad_QP of | and shu € rad(A) for some s,b €] and u € [, then either

su € rad(A) or bu € rad (rad (A)) = rad (A) as desired.

(2) = (1) Letabu € Afor somes,b € R and u € I. Put that su & A, we must prove that bu € rad(4). Since

sbu € A € rad (A), so sbu € rad(A) and by hypothesis, rad (A) is QP implies that either su € rad(A) or

bu € rad(A) as wanted.

Remarks and Examples 2.5

1)  Each one of the semiprime and rad-QP submodules does not lead to the other, like the following example: 67Z. is a
semi-prime sub module of Z as Z - module because 6Z = rad(6Z) = \/6Z, while 6Z is not rad-QP because
2.3.1 € 6Z, while 2.1 € rad (6Z) and 3.1 & rad (6Z). On the other side, 4Z is rad-QP, but it is not
semiprime since 22.1 € 4Z and 2.1 € 47Z.

2) Clearly, if A is a radical submodule (that is, d(A) = A ) of a J-module I, then the concept rad-QP and QP are
equivalent.

3) Forany J-module I, if rad(A) = I then A Rad_QP of I.

4)  Every submodule of the Z-module, Zpe can be written as A =< p—1n+z = where = 0,1,2, ... . It’s well known

that every submodule of Zpe is not primary and, hence, not prime so that rad (A) = Zpe for every submodule
A of Zpeo, it follows that A Rad_QP of Zpe by (3).

5)  Every sub module of @ as Z- module is rad-QP because the zero submodule is the only prime submodule in @.
Hence, rad(A) = @ for all non- zero sub module A of @ so by (3), 4 is rad-QP. If A =< 0 > then
rad(A) =< 0 > < Q, and with theorem (2.4), 4 is rad-QP.

6) If A isa direct summand of a submodule B of a J- module I then A may not be rad-QP. For example, A =< 6 > isa
direct summand submodule of B =< 2 > in Z;, as Z-module where < 6 >B<4 >=<2 > But< 6 >
isn’t rad-Q P because 2.3.1 €< 6 > while 2.1 ¢ rad(< 6 >) =< 6 >and 3.1 & rad(< 6 >).

7) Let H<S B be sub modules of a J-module I. If B Rad_QP of I, then H need not. For instance,

H =< 6 >C B =< 2 > inZ;, as Z-module where B < I, and hence, it is rad-QP while H is not rad-QP as
shown in (6).
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Proposition 2.6

Let I be a /- module and A be sub module of I. The next statements are equivalent:

1) ARad QPofl.

2) [rad(A): < m >]isaprimeideal (p.id.) of ] forallm € I.

Proof

(1) = (@ Let a, b€R with ab € [rad(A):;g<m >] . Hence ab E<m >S rad(4) , thus
abm € rad (A). By assumption, A Rad_QP of I and so am € rad (A) or bm € rad(A). This indicates
that either < am >€ rad(A) or < bm >€ rad (A). It’s easy to notice that a <m >=< am >
and b < m >=< bm > so we have eithera < m >€ rad (A) or b < m >€ rad(A), it follows that
a €[rad(A):g<m >]orb € [rad(A):g < m =] means that [rad (4): < m =] isap.id. of ].

(2 = (1) Let abm € A where a,b € R and m € M. Consider that am & A, we need verify that
bm € rad(A). As abm € A € rad(4) point toward
thatab € [rad(A4):m] = [rad(A): < m >]. By suggestion, [rad(4):<m >] is a p.id. of
J, thats, a€[rad(A):<m>] o b€]J[rad(A):<m=>]. So am€rad(4) or
bm € rad(A) and thus A Rad_QP of I.

Theorem 2.7

The next statements are equivalent :

1) ARad QPofl.

2) [rad(A): B]isap.id. of | for any sub module B of I.

3) [rad(A):< am >] =[rad(Ad):< m >]foranym € I, foranya € J with a € [rad (4): < m =>].
Proof

(1) = (2) Assuming that A Rad_QP of I, [rad (4): < m >] is a p.id. of ] for each m € I. We claim that for any
submodule B of I, we have to show that [rad (A): B] is a p.id. of J. Let ab € [rad (4): B]. Assuming that
a & [rad(A):Bland b € [rad (A): B], it follows that aB & rad(A) and bB & rad (A). Its meaning is that
there is m, n € B where am & rad(A) and bn € rad (A), which is an opposite with assumption. Therefore,
[rad (A): B] isap.id. of ] for any sub module B of I.

(2) = @) Clearly, [rad(A):<m =] S [rad(4):<am >] . Let b€ [rad(4):< am >] with
a & [rad (A): < m >]implying that b < am >< rad(A). Itis easy see that b < am >= ba < m > and,
thus, ba < m >C rad(A)—that is, ab € [rad (A): < m >]. By hypothesis, [rad (4): < m >] is a p.id. of
J and because a €& [rad(A):<m >] implies that b€ [rad(4):<m >] —that s
[rad(A): < am >] € [rad(4): < m =].

(3) = (1) Letab € A, wherea,b € Jand m € I. Assume that am & rad(A) implies a & [rad (4): < m >],
and so [rad(A):<am >] =[rad(4):< m =] . Furthermore, b € [rad(A4):< am >] ; thus,
b € [rad (A): < m =] implies that bm € rad(A) as desired.

Corollary 2.8

Let A Rad_QP of I, then [rad (A): I] isap.id. of /.
Proof

Directly by Theorem (2.7):

The reverse of Corollary (2 .8) isn’t hold in general. For example, A = 6Z < 0 > isn’t Rad_QP submodule of
I=Z@®Z a Z -module since 2.3.(1,00 €4 and 2.(1,0) =(2,0) €rad(4)=A , nor
3.(1,0) = (3,0) € rad(A) = A while [rad (4):I] =< 0 > isap.id. of Z.

Proposition 2.9
If A Rad_QP of I, then [rad (A): al] = [rad (A):I] foreach a & [rad (A):I].
Proof
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Let b € [rad (A): al] implies that abl € rad (A). Then ab € [rad(A):I] and since A Rad_QP of I so
[rad(A):I]is a p.id. of ] by Theorem (2.7), and as a result, b € [rad (A):I] because a & [rad (A):I]. It
gives that [rad(A4):al] € [rad(A):I] . Let b € [rad(A):I] implies that bl S rad(A) , and so
abl € rad(A).Hence, b € [rad (A):al]. Thatis, [rad (A): al] = [rad(A):I] foreach a & [rad (A):I].
The opposite of the corollary isn’t hold in general. For example, A = 6Z D< 0 > isn’t Rad QP of ] = Z D Z as
Z-module while [rad (4):I] = [rad (A): al] =< 0 > foreacha & [rad (A):1].

Lemma 2.10 [7]
Let I be a finitely generated /-module. Then +/ [A: I] = [rad (A):I] for each submodule A of .

Corollary 2.11

If A Rad_QP of a finitely generated J-module I, then [rad (A):al] = /[A: I] foreach a & [rad (4):1].
Proof
Obviously, by Proposition (2 .9) and Lemma (2 .10).

Lemma 2.12 [8]
The intersection of any couple of different prime submodules of a J - module I is 2 - absorbing.

Proposition 2.13
Clearly, every rad-QP submodule is 2 - absorbing primary sub module.

Remark 2.14

The opposite of Propositon (2.13) is not hold generally. For example, consider Zg as Z-module,
rad(< 0 >) =<2 >N< 3 >=< 0 > implies < 0 > is 2-absorbing submodule, and therefore, it is a
2-absorbing primary. But < 0 > isn’t rad -QP sub module because 2.3.1=0€< 0> while
2.1¢rad(< 0 >)and3.1 € rad(< 0 >).

The following diagram is obvious:

Prime submodules = quasi-prime = rad-quasi-prime = 2-absorbing primary
But the reverse of these implications is not hold generally.

Lemma 2.15
Let I be a /- module, then o/ [A:I] € [rad(A): 1] for each submodule 4 of I.
Proof

If rad (4) = I, so the relation +/[A:1] € [rad(A):I] is hold. In case rad(4) # I, let B <, I with A S B.

Hence, [A:I] S [B:I] and [B:I]is a pid. of R and so +/[A:I] € /[B:I] =[B:I]. Thus,
[A:1]1< [B:I]l €B;itfollows that 1/[A:I] I € B; this is true for all prime submodule B containing A of

I. Therefore, /[A:g I] I EN B = rad(A) as desired.

Proposition 2.16
Every primary submodule is rad-QP.
Proof

let A < I and abm €A , where a,b€ER , me€l . Put x=bm , so either x €A or
[A:g I] € [rad(A):z I] by Lemma (2.15), and thus, al € rad (A) means am € rad (A) for each

m € M. Therefore, either bm € A oram € rad (A); that is, A Rad_QP of I.

Remarks and Examples 2.17
1) The converse of Proposition (2.16) isn’t hold generally. Like the example,

rad(4Z @ <0 >) =2Z B<0> is Rad QP of ZDZ as Z - module so by Theorem (2.4),
47 P< 0 > is a rad-QP submodule, while 4Z < 0 > is not primary submodule since
2.(2,0) E4Z P < 0 >, while (2, 0) F4Z D< 0 >and 2(ZD Z) & 4Z H< 0 >.

2) Inthe Z-module Z, the primary and rad-QP submodules concepts are equivalent.
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Proof

Let A be a submodule of Z, implying that A = tZ for some positive integer t. If t is a prime number, then A is a
prime submodule, and so there is nothing to prove. Let 1 # t be not a prime number. By the factorization theorem, we
can write t = plkl.pg k2 .. prk?" as a factorization of the positive integers into distinct primes P; and k; is integers
where i = 1,2, ....7. Thus, VA = tZ= /< pF1.pf2 opfr >= < pi.p, oDy >. In case r =1,

VA=tZ=,/< pk >=< p > is a prime sub module (and therefore, quasi-prime), for some a positive integer k,
so by Theorem ( 2.4) A is rad-QP, and at the same time, A4 is a primary sub module since it is of the form < pk =.1In

case 7 = 2 implies that A is not rad-QP, to show this, if ¥ = 2, then \/< py*i.pyk2 > = < p;.p, > is not rad-
QP because pi.p2.l1 E<pi.pp =, but p;.1E<p;.pp > and pp.1 E<p;.py >, and hence,
A= \/< pi¥ip,¥2 >= < p;.p, > is not primary submodule. By induction A =+tZ=

\f< pi*i.pke pfr > = < pi.py ..p, >, foreach r = 2 that is A isn’t rad-QP, and hence, it is a primary
submodule.
3) Primary submodules and QP submodules are independent. For example, 4Z < Z as Z-module while 47Z isn’t QP

because 2.2.1 € 4Z and 2.1 & 4Z. On the other hand, 2Z D < 0 > <gp Z D Z as Z-module, but it isn’t
primary  since 2(30)=(6,00€2ZH<0> , while ((B0)E&2ZPH<0> and
200DZ)=2Z P27 €27 H< 0 >.
Lemma 2.18 [9]
Let I be a J-module such that ] =D, I, is a direct sum of submodules I, (@ EA). For all @ EA, take
A, asasubmodule of I, and let A =D, A,. Then rad(A) =D g eprad (4,).
Remark 2.19
The direct sum of rad-QP submodules may be not rad-QP. For example, 8Z and 9Z are rad-QP sub modules of Z as
Z- module, while 8Z €D 9Z isn’t rad_QP submodule of Z P Z as Z -module since 2.3.(1,1) € 8Z & 9Z but
2.(1,1) € rad (8Z @ 9Z) = rad(8Z) B rad(9Z) = 2Z P 3Z by Lemma (2.18), and
3.(1,1) € rad(8Z @ 9Z) = 2Z b 37Z.
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