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1. INTRODUCTION 

Optimization algorithms have been a suitable approach to solving the most difficult problems in various real-world 

fields and systems, from engineering and economic sciences to health care. Nowadays, optimization algorithms have 

become widespread thanks to technological development. To keep pace with development and modernity, there has 

been an urgent need to develop and improve a wide range of optimization algorithms so that they are classified 

according to their speed and strength to achieve the required optimization goals with high efficiency. These algorithms 

have played a pioneering role in making constructive decisions to find optimal solutions to various problems. In this 

paper, it will be an extensive journey through time to explore and review the wonderful evidence of the most important 

optimization algorithms from the past to the present day. By delving deeper into the historical development patterns of 

these algorithms, insight into their development methods, basic principles, and notable applications can be gained. 

Among the highlights of our journey are early developments in the approach to optimization algorithms, for example, 

the gradient descent approach, which laid the foundation for many optimization techniques in machine learning as well 

as parameter optimization [1-3]. In addition, more research has delved into the origins of genetic algorithms, whose 

influence was inspired by the foundations of natural evolution, where their distinct influence was effective on resource 

allocation as well as engineering design problems [4-8]. Our journey also includes the detection of the emergence of 

simulated annealing, which was originally inspired by the physical process of annealing, as well as revolutionary 

harmonic optimization [9-15]. Particle swarm optimization (PSO) has joined the scope of flight, mimicking nature 

through organisms in their behavior to address the challenges of control engineering and parameter optimization [16-

21], as well as the ant colony algorithm, inspired by the foraging behavior of ants, to solve routing and scheduling 

problems [22-24]. A motive for progress in various fields [25-27]. In addition, exploring the world of constrained 

programming, which is concerned with solving combinatorial problems with complex constraints, allows for effective 

scheduling and resource allocation in various applications [28-29]. The emergence of inner point methods provides 

efficiency and accuracy for linear and nonlinear programming problems, leading to great strides in optimization 

techniques [30-31]. Moreover, the innovative approach of Tobu searches with non-convex objectives was discussed, 

which, in its approach, uses memory-based strategies to navigate complex search spaces and excels in combinatorial 

optimization problems [32], [33]. The reality of convex optimization is also revealed, the power of which highlights 

applications in portfolio optimization, signal processing, and beyond [34-36]. By conducting this study and delving into 

the historical development of optimization algorithms, the tracker can estimate the evolution and transformation of 
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optimization techniques over time. A map can be drawn showing each algorithm’s contribution to solving real-world 

problems and shaping developments in various fields, and the recipient can appreciate the evolution and transformation 

of optimization techniques over time. Our goal is also to provide a comprehensive perspective on the most important 

optimization algorithms, their basic principles, and their impact on various fields. By understanding their strengths, 

limitations, and historical context, the current state of optimization algorithms can be better estimated, and the 

upcoming trends in this area of dynamic development can be predicted. As we embark on a journey into the world of 

optimization algorithms and reveal their impact on problem-solving, a visual guide awaits us at the doorstep. The 

following flowchart briefly captures the various types of optimization algorithms, serving as our navigation tool in 

understanding their multifaceted applications (see Fig. 1). 

 
FIGURE 1. Flowchart depicting target types of optimization algorithms. 

 

 

2. EXPLORING OPTIMIZATION ALGORITHMS FOR DIVERSE CHALLENGES 

Optimization algorithms serve as guides for navigating the vast landscape of possible solutions to most problems. 

These algorithms have revolutionized our ability to tackle complex problems across many domains. This section takes a 

magnifying glass to some of the most important and notable optimization techniques, highlights their basic principles, 

and unveils quite a few of the applications that have propelled them to the forefront of modern computational methods.  

 

2.1 GRADIENT DESCENT 

The gradient descent algorithm is one of the fundamental algorithms that dates back to the early 19th century. In 

fact, this method was first introduced by French scientist Augustin-Louis Cauchy, and it gained a lot of attention for 

solving optimization problems during the 20th century [37]. With the introduction of machine learning and neural 

networks, the gradient descent approach became a basic algorithm for optimizing model parameters, as it played an 

important role in this regard. By taking the reduction of the cost or loss function as a main goal and by modifying the 

model parameters iteratively, this is achieved. The technique determines the gradient descent and the steepest descent 

direction by calculating the gradient of the cost function concerning the parameters, and it updates the parameters step 

by step accordingly. Right up to the modern era, with the advent of deep learning, the gradient descent approach has 

been of distinct importance due to its ability to efficiently optimize and process complex models. 

 

2.2 GENETIC ALGORITHMS 

Based on natural selection and genetics, the genetic algorithm was inspired, as it is a series of steps that simulate an 

evolutionary process to obtain optimal solutions. Genetic algorithm procedures involve creating and generating 

numerous possible solutions, and these solutions are evaluated according to a predetermined objective function, which 

goes on to select the best individuals for reproduction. Population fitness is gradually improved over generations by 

generating new offspring through a process of cross-breeding and mutation. John Holland and his colleagues continued 

to develop the genetic algorithm approach in the 1960s and 1970s [38]. As a result, the inspiration of natural selection 

and evolutionary biology led to the crystallization of the idea of formulating genetic algorithms as a means to solve 

optimization problems that are at a level of complexity due to the advantage of this algorithm through large search 

areas within complex constraints. His book, “Adaptation in Natural and Artificial Systems,” was the basis for this field, 

and it was published in 1975. 
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2.3 SIMULATED ANNEALING 

Simulated annealing is a procedure inspired by the physical annealing process, which includes several procedures 

to obtain a solution to the optimization problems. This approach is particularly effective and valuable when dealing 

with optimization problems of discrete or combined types. The first steps are that the algorithm starts with an initial 

guess of the solution and then explores the solution space iteratively, and suboptimal moves are accepted based on the 

probability distribution as the approach allows a greater probability of accepting the worst solutions based on 

simulating the idea of high-temperature annealing, and then the solutions are selected for optimization problems. As the 

temperature decreases over time, the acceptability of the worst-case solution decreases and converges toward the global 

optimum. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi simulated annealing in 1983 [39]. The physical process of 

annealing in metallurgy, in which a material is gradually heated and cooled to reduce its defects inspired the algorithm. 

From this principle, simulated annealing applies a similar concept to optimization problems, progressively exploring 

the solution space with controlled acceptance of suboptimal motions, as the solutions through it are almost ideal for 

harmonic optimization problems. An algorithm called process annealing is used to reduce defects and improve the 

crystal structure of the material through a gradual heating and cooling process. Simulated annealing provides the 

opportunity to explore the search space by accepting the worst-case solutions early in the search process when the 

temperature is at its highest. The algorithm becomes more selective and tends to converge toward better solutions as the 

temperature decreases. This balance between exploitation and exploration thus enables the simulated annealing process 

to escape local optimization and find near-optimal solutions. Applications of this algorithm have taken a wide range 

and have been successful in solving a range of optimization problems, including scheduling problems, traveling 

salesman problem, combinatorial optimization, and circuit design in different domains. It is particularly useful for 

processing when the objective function is not convex or noisy where traditional optimization methods have great 

difficulty finding good solutions. 

 

2.4 PARTICLE SWARM OPTIMIZATION (PSO) 

A population-based metaheuristic method called PSO draws its inspiration from the social behavior of fish schools 

and bird flocks. A collection of particles that have a function and speed in the solution area show capacity answers in 

PSO. Based on their collective revel in and the modern best global solution, the particles collaborate and communicate 

to transport in the direction of superior solutions. PSO has applications in fields such as statistics clustering, photo 

processing, and neural community education and is specifically a success for non-stop optimization problems. James 

Kennedy and Russell Eberhart proposed PSO in 1995 [40]. PSO simulates the movement of debris in a 

multidimensional search area and is stimulated by the social conduct of fish faculties and flocks of birds. The set of 

rules’s success in handling issues involving non-stop optimization helped it end up being broadly used. The approach is 

based on a set of the particles, each of which represents a capacity answer to the optimization problem and moves 

around the search space. In addition to the studies of the particles in the swarm, the debris interact with one another and 

switch positions in reaction to their personal stories. This is acting in a fine manner. In PSO, particles collaborate 

interact with one another to trade expertise approximately about successful answers discovered within the search area. 

A particle’s speed is altered in step with both its personal highest quality function and the greatest function determined 

by means of the swarm. The particles can discover the hunting space and converge over iterations to advanced answers 

thanks to their cooperative behavior. PSO is renowned for solving continuous and discrete optimization problems 

without difficulty and effectiveness. It has been used for a variety of specific functions, such as characteristic choice, 

statistics clustering, neural community education, and feature optimization. PSO, however, is susceptible to parameter 

settings and can be afflicted by untimely convergence to inferior answers. As a result, rigorous parameter adjustment 

and PSO versions, such as hybrid procedures or adaptive techniques, are frequently applied to enhance their 

performance on specific problem domains. 

 

2.5 ANT COLONY OPTIMIZATION (ACO) 

Ant colony optimization (ACO) phenomenon mimics the foraging conduct of ants to locate the finest paths through 

networks or graphs. This set of rules is applied to routing, scheduling, and logistics optimization issues. The program 

mimics the pheromone trail left behind by ants, which draws other ants to useful passageways. As more ants cross the 

problem vicinity, the pheromone path is bolstered, and the algorithm moves in the ideal direction. ACO has 

demonstrated its efficacy in resolving complex problems with a lot of boundaries and dynamic situations. Marco 

Doregio came up with the concept for an ACO task in the early 1990s [41]. Deriving the concept from the foraging 

pastime of ants, he found the inspiration for his paintings on this route and laid out an approach to ant colony 

improvement. This optimization method is an effective way to resolve optimization problems regarding graph and 

network traversal.. 

 

2.6 EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms (EAs) is a term that refers to a set of optimization algorithms whose suggestions come 

from the principles of natural selection and genetics. Central to those algorithms are iterative production processes and 
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the assessment of feasible solutions, inclusive of genetic programming (GP) and evolutionary strategies (ES). The basis 

process of those algorithms is to simulate organic evolution through the incorporation of factors of selection, 

intersection, and mutation to push a collection of individuals toward optimal solutions. When it involves fixing 

complicated and multidimensional optimization issues, EAs are very useful. Researchers John Holland, Ingo 

Rechenberg, and Hans-Paul Schwefel did paintings within the area of EAs in the 1960s and 1970s [42]. EAs represent a 

distinct family of algorithms made possible by means of their contributions to genetic algorithms, evolutionary 

techniques, and evolutionary programming.  

 

2.7 CONSTRAINT PROGRAMMING 

The constraint programming (CP) method is a pioneering problem-solving method wherein issues are optimized while 

ensuring that a set of special constraints are met. The problem is formulated with the aid of defining a collection of 

variables, their respective domains, and a fixed set of constraints. Constraint propagation techniques are then employed 

to steadily lessen the search space through iterative strategies. Through the utilization of smart seek techniques, 

computational hassle-solving algorithms efficaciously navigate the solution space while maintaining adherence to the 

required barriers. The usage of CP is universal within the domains of scheduling, resource allocation, and making plans 

quandaries. The beginnings of CP can be traced back to the 1960s, when algorithms were first developed to deal with 

the demanding situations posed with the aid of constraint fulfilment troubles [43]. Over time, scholars have made 

improvements and expansions to the approach, resulting in the status quo of CP as a distinct and recognized field.  

 

2.8 INTERIOR POINT METHODS 

Interior point methods (IPMs) are extraordinarily powerful optimization techniques for the solution of both linear 

and nonlinear programming issues. In contrast to conventional approaches that contain the exploration of the bounds of 

the viable region, interior factor techniques (IPMs) navigate into the interiors of the viable area. With barrier features, 

indoors point techniques (IPMs) have the capacity to transform restricted optimization troubles into unconstrained ones, 

subsequently allowing the iterative approximation toward the top-of-the-line solution. Integrated pest management 

(IPM) has demonstrated its efficacy in addressing optimization problems of considerable size, characterized by a 

substantial number of variables and restrictions. The inception of interior point approaches for optimization occurred 

throughout the latter years of the 1980s and the early years of the 1990s [44]. Prominent scholars, such as Narendra 

Karmarkar and Yurii Nesterov, have achieved noteworthy advancements in the realm of interior point techniques, 

thereby bringing about a transformative impact on the domain of linear and nonlinear programming. 

 

2.9 TABU SEARCH 

Tabu search (TS) is a heuristic algorithm that is specially used to optimize model parameters for combinatorial 

optimization problems. Moreover, descriptive inference is a general strategy used to direct and control actual inference. 

TS works by incorporating memory structures into local search strategies because local search has many limitations. TS 

is designed to address common problems of this kind. It was first proposed by Glover and further developed by Hansen 

[45]. Nowadays, TS is a well-established research procedure, and its applications have been effective and successful in 

solving a wide range of optimization problems [46]. TS encourages the exploration of unvisited areas in the solution 

space by imposing restrictions on moves that may lead to revisiting previously encountered solutions. This mechanism 

facilitates the algorithm’s ability to avoid the trap of local optimization and enhances its ability to discover optimal 

solutions. TS application has shown successful results on combinatorial optimization problems. Fred W. Glover 

introduced TS during the late 1980s. The algorithm was developed as a means of expanding upon local search 

approaches by integrating a memory mechanism to overcome the limitations of local optima. Glover’s influential 

publication titled “Tabu Search: Part I,” which was released in 1986, included a thorough examination of the algorithm 

and its various uses. 

 

2.10  CONVEX OPTIMIZATION 

Convex optimization pertains to the resolution of optimization problems in which both the goal function and the 

constraints exhibit convexity. The property of convexity guarantees that any local minimum discovered is, in fact, the 

global minimum. Convex optimization algorithms, such as inner-point methods and sequential quadratic programming, 

take advantage of the inherent properties of convex functions to effectively address optimization problems. Convex 

optimization has been extensively employed in the fields of machine learning and signal processing. The field of 

convex optimization possesses a significant historical background that can be traced back to the initial decades of the 

20th century. Prominent scholars, namely R.L. Graves, D.G. Luenberger, and Stephen Boyd, have made noteworthy 

advancements in the realm of convex optimization algorithms, in terms of both theoretical foundations and practical 

implementations [47-49]. 

 

 



Ahmed Hasan Alridha., Iraqi Journal for Computer Science and Mathematics Vol. 5 No. 2 (2024) p. 122-134 

 

 

 126 

3. APPLICATIONS OF OPTIMIZATION ALGORITHM 

This extensive section aims to explore the exceptional adaptability of optimization methods in various sectors. 

Tables 1 and 2 serve as evidence of the significant influence exerted by these algorithms. These tables provide valuable 

insight into the capabilities of optimization algorithms to bypass practical limitations and deliver solutions and 

workarounds across a wide range of contexts. 

 

3.1 NAVIGATING OPTIMIZATION PROBLEM TYPES AND CORRESPONDING ALGORITHMS 

As a result of the difficulties in the complex world of optimization, there is an urgent need to find specialized 

techniques to solve these difficulties and to classify the solutions that have been reached according to the type of 

problem, which saves time and effort for the stakeholders, as Table 1 provides a comprehensive investigation for this 

purpose. This visual guide serves as a navigational tool, emphasizing the dynamic relationships between algorithms and 

various problem scenarios as well as the vast terrain of optimization problem-solving. 

Table 1. Optimization algorithms and their applications to corresponding optimization problems in the real 
world. 

Optimization Algorithm Optimization Problems 

Genetic Algorithms Resource allocation 

Scheduling problems 

Simulated Annealing Engineering design problems 

Combinatorial optimization 

Particle Swarm Optimization Parameter optimization in machine 
learning 

Control engineering problems 

Energy system optimization 

Ant Colony Optimization Routing and scheduling problems 

Data clustering 

Evolutionary Algorithms Multi-objective optimization problems 

Graph problems and optimization 

Constraint Programming Scheduling and resource allocation 
problems 

Complex constraint optimization problems 

Interior Point Methods Linear programming problems 

Combinatorial problems with complex 
constraints 

Tabu Search Combinatorial optimization problems 

Nonlinear programming problems 

Convex Optimization Portfolio optimization 

Signal processing applications 

Non-convex and discontinuous objective 
functions 

Gradient Descent Machine learning model training 

 

Fig. 2 shows a mutually beneficial relationship between problem landscapes and optimization strategies. As we 

examine the specifics, each row reveals how well an algorithm handles a particular problem. The deliberate coupling of 

algorithms and their domains is strikingly highlighted by this organized arrangement. Each submission demonstrates 

the adaptability and creativity these algorithms bring to both practical and theoretical concerns. 
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FIGURE 2. A comprehensive mapping for optimization algorithms and corresponding problem types. 

 

4. APPLICATIONS OF OPTIMIZATION ALGORITHMS IN THE APPLIED SCIENCES 

 

Table 2 focuses on particular applications in several sciences, with a particular emphasis on the crucial roles that 

optimization algorithms play in the fields of chemistry, physics, and engineering. Here, the main situations in which 

these algorithms have a significant impact will be examined, highlighting their importance and contributions in these 

dynamic areas.  

Table 2. Optimization algorithms applications in applied Sciences 

Optimization 

Algorithm 

Optimization 
Problem 

Chemistry Physics Engineering 

Genetic 

Algorithms 

 

Resource 
allocation 

Optimal 
allocation of 

reagents, 
materials, and 

resources. 

Optimal 
resource 

allocation in 
experiments. 

Allocation of 
resources in 
production 
systems. 

Scheduling 
problems 

Lab 
experiment 
scheduling, 

reaction 
scheduling, 

process 
scheduling. 

Experimental 
setup 

scheduling. 

Task 
scheduling, 

project 
scheduling. 

 Engineering 
design 

problems 

Molecular 
structure 

optimization, 
catalyst 
design. 

Material 
design, 

structure 
optimization. 

Optimal design 
of structures, 

systems, 
circuits. 

Simulated 
Annealing 

Applications 

Combinatorial 
optimization 

Molecular 
conformation 

search, 
combinatorial 

Spin glass 
models, Ising 

model 

Optimal 
configuration 
of networks, 
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library design. circuits. 

Energy system 
optimization 

Optimal 
reaction 

conditions, 
energy 

landscape 
exploration. 

Ground state 
calculations. 

Energy-
efficient 
systems, 
building 

optimization. 

Particle Swarm 

Optimization 

Applications 

Parameter 

optimization in 

machine 

learning 

Molecular 

property 

prediction, 

molecular 

docking. 

Parameter 

estimation, 

fitting models. 

Optimization 

of control 

systems, 

system 

identification. 

Control 

engineering 

problems 

Optimal 

control of 

chemical 

processes, 

automation 

systems. 

Optimal 

control of 

physical 

systems. 

PID controller 

tuning, 

trajectory 

optimization. 

Data clustering Chemical data 

clustering, 

structure-

activity 

relationship 

analysis. 

Cluster 

identification, 

phase 

transitions. 

Image 

segmentation, 

pattern 

recognition. 

Ant Colony 

Optimization 

Applications 

Routing and 

scheduling 

problems 

Supply chain 

logistics, 

delivery route 

optimization. 

Network 

routing, traffic 

flow 

optimization. 

Production 

scheduling, 

vehicle 

routing. 

Graph 

problems and 

optimization 

Molecular 

graph analysis, 

molecular 

structure 

generation. 

Network 

analysis, 

optimization 

on graphs. 

Circuit design, 

graph-based 

optimization. 

Evolutionary 

Algorithms 

Applications 

Multi-

objective 

optimization 

problems 

Drug 

discovery with 

multiple 

objectives, 

molecular 

diversity. 

Optimization 

of physical 

systems with 

conflicting 

objectives. 

Optimization 

of complex 

engineering 

systems. 

Complex 

constraint 

optimization 

problems 

Molecular 

structure 

optimization 

with 

constraints. 

Optimization 

with physical 

and 

mathematical 

constraints. 

Optimization 

of engineering 

systems with 

complex 

constraints. 

Constraint 

Programming 

Applications 

Scheduling 

and resource 

allocation 

problems 

Lab 

experiment 

scheduling, 

production 

scheduling. 

Experimental 

setup 

scheduling, 

equipment 

scheduling. 

Resource 

allocation, 

project 

scheduling. 

Combinatorial 

problems with 

complex 

constraints 

Design of 

molecules with 

specific 

properties, 

combinatorial 

library design. 

Constraint 

satisfaction 

problems in 

physics 

simulations. 

Design 

optimization 

with complex 

constraints, 

configuration 

problems. 

Interior Point 

Methods 

Applications 

Linear 

programming 

problems 

Optimal 

resource 

allocation, 

mixture 

design. 

Optimization 

of 

experimental 

conditions. 

Production 

planning, 

supply chain 

optimization. 
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Nonlinear 

programming 

problems 

Reaction 

optimization, 

parameter 

estimation. 

Quantum 

mechanical 

calculations, 

model fitting. 

Optimal 

control 

systems, 

process 

optimization. 

     

 

Tabu Search 

Applications 

Combinatorial 

optimization 

Molecular 

conformation 

search, 

combinatorial 

library design. 

Spin glass 

models, 

optimization 

problems. 

Network 

design, 

optimization of 

processes. 

Non-convex 

and 

discontinuous 

objective 

functions 

Optimization 

of reaction 

conditions 

with complex 

objective 

functions. 

Optimization 

of physical 

systems with 

non-convex 

objectives. 

Optimization 

of engineering 

systems with 

non-convex 

objectives. 

Convex 

Optimization 

Applications 

Portfolio 

optimization 

Optimal 

allocation of 

investments, 

risk 

management. 

Portfolio 

optimization, 

risk analysis. 

Optimal 

allocation of 

resources, 

investment 

planning. 

Signal 

processing 

applications 

Spectral 

analysis, signal 

denoising 

Signal 

processing, 

image 

reconstruction. 

Image 

processing, 

audio signal 

enhancement. 

 

5. A COMPARISON OF THE OPTIMIZATION ALGORITHMS 

In light of the aforementioned, it was necessary to establish a comparative analysis of the characteristics exhibited 

by the algorithms under investigation in our research. The present analysis presents a comparative examination of the 

fundamental characteristics of the designated optimization methodologies, as summarized in Table 3. 

Table 3. An overview highlighting key attributes of optimization algorithms through comparison. 

Algorithm Approach Problem Types Search Space Memory Usage Key Advantage 

Gradient 

Descent 

Iterative, 

gradient-based 

Continuous, 

differentiable 

Large Low Efficient for 

optimizing 

machine learning 

models and 

neural networks. 

Genetic 

Algorithms 

Evolutionary, 

population-

based 

Combinatorial Large, discrete High Effective for 

problems with 

large search 

spaces and 

complex 

constraints. 

Particle Swarm 

Optimization 

Population-

based, social 

behavior 

Continuous, 

combinatorial 

Large Low Efficient for 

continuous 

optimization 

problems and 

inspired by 

natural collective 

behavior. 

Ant Colony 

Optimization 

Stochastic, trail-

based, collective 

Combinatorial Large, discrete Low Suitable for 

problems 

involving 

routing, 

scheduling, and 

logistics, 
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effective in 

dynamic and 

changing 

environments. 

Evolutionary 

Algorithms 

Evolutionary, 

population-

based 

Combinatorial Large High Effective for 

complex 

optimization 

problems with 

multidimensional 

search spaces. 

Constraint 

Programming 

Constraint-

based, intelligent 

search 

Combinatorial Large, discrete Low Suitable for 

problems with a 

set of constraints 

that need to be 

satisfied. 

Interior Point 

Methods 

Convex 

optimization, 

interior traversal 

Linear, 

nonlinear 

Large Low Efficient for 

solving linear 

and nonlinear 

programming 

problems. 

Tabu Search Metaheuristic, 

adaptive 

memory 

Combinatorial Large, discrete Moderate Escapes local 

optima, explores 

new regions in 

the solution 

space. 

Convex 

Optimization 

Convex 

function-based, 

specific methods 

Convex Large Low Efficient for 

solving 

optimization 

problems with 

convex 

objectives and 

constraints. 

 

Finally, Table 4 provides an effective comparison of the characteristics of optimization algorithms. The table 

addresses key aspects, such as execution speed, computing cost, and compatibility with the real environment, in 

addition to a comprehensive analysis that enables the user to understand the prominent differences between these 

algorithms. 

Table 4. Comprehensive comparative analysis of the performance and integration of optimization algorithms. 

Algorithm Speed of 
implementation 

Computing cost Compatibility 
with the real 
environment 

Analysis 

Genetic 

Algorithms 

Variable Medium Strong Flexibility and 

strength in 

solving complex 

problems. 

Simulated 

Annealing 

Medium to slow Low to medium Good Average 

performance, 

change 

efficiency, 

balance between 

exploration and 

exploitation. 

Particle Swarm 

Optimization 

Medium to slow Low to medium Good Fast, versatile 

adaptation, large-

scale problems. 

Ant Colony 

Optimization 

Medium to slow Low to medium Good Excellent 

guidance, 

environmental 

adaptation, 
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effective in 

improving 

distribution. 

Evolutionary 

Algorithms 

variable Medium Strong Strength in 

optimization and 

design, interest 

in complexity. 

Constraint 

Programming 

variable Medium Good Excellence in 

problem-solving, 

strength in 

resource 

planning, interest 

in memory and 

complexity. 

Interior Point 

Methods 

Fast to medium Low to medium Strong Fast, effective in 

solving specific 

problems, 

powerful in 

software 

improvement. 

Tabu Search Medium to slow Low to medium Good Average results, 

good in 

optimization and 

scheduling, 

attention to 

memory 

 

 

6. DISCUSSION AND CONCLUSION 

Optimization algorithms are important to many scientific disciplines, including chemistry, physics, and 

engineering. Each algorithm has strengths and distinct features that make it better suited for specific applications. The 

gradient descent algorithm plays a crucial role in the training of machine learning models and the optimization of 

parameters, while genetic algorithms demonstrate exceptional performance in addressing resource allocation and 

engineering design challenges. The simulation annealing algorithm has proven effective in the field of combinatorial 

optimization and power system optimization, while the particle swarm algorithm has proven effective in the context of 

parameter optimization and control engineering. The study demonstrated that ACO was useful in addressing routing 

and scheduling difficulties, while EAs were particularly effective in dealing with multi-objective optimization and 

complex constraint problems. The comparison showed that constrained programming was characterized by high 

efficiency in solving scheduling and combinatorial problems that included complex constraints, while internal point 

approaches excelled in both linear and nonlinear programming. Furthermore, the Tabu search algorithm was suitable 

for dealing with non-convex targets, which enhances its role in the field of combinatorial optimization. In the context of 

portfolio optimization and signal processing applications, convex optimization has proven effective. Finally, the nature 

of the problem dictates the use of certain optimization algorithms over others, as the nature of the problem, its inherent 

features, and the specific requirements of the application are more compatible with certain types of algorithms than 

others. 
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